Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Pharm ; 20(2): 987-996, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36626167

RESUMO

Despite the understanding that renal clearance is pivotal for driving the pharmacokinetics of numerous therapeutic proteins and peptides, the specific processes that occur following glomerular filtration remain poorly defined. For instance, sites of catabolism within the proximal tubule can occur at the brush border, within lysosomes following endocytosis, or even within the tubule lumen itself. The objective of the current study was to address these limitations and develop methodology to study the kidney disposition of a model therapeutic protein. Exenatide is a peptide used to treat type 2 diabetes mellitus. Glomerular filtration and ensuing renal catabolism have been shown to be its principal clearance pathway. Here, we designed and validated a Förster resonance energy transfer-quenched exenatide derivative to provide critical information on the renal handling of exenatide. A combination of in vitro techniques was used to confirm substantial fluorescence quenching of intact peptide that was released upon proteolytic cleavage. This evaluation was then followed by an assessment of the in vivo disposition of quenched exenatide directly within kidneys of living rats via intravital two-photon microscopy. Live imaging demonstrated rapid glomerular filtration and identified exenatide metabolism occurred within the subapical regions of the proximal tubule epithelia, with subsequent intracellular trafficking of cleaved fragments. These results provide a novel examination into the real-time, intravital disposition of a protein therapeutic within the kidney and offer a platform to build upon for future work.


Assuntos
Diabetes Mellitus Tipo 2 , Exenatida , Rim , Animais , Ratos , Diabetes Mellitus Tipo 2/metabolismo , Exenatida/metabolismo , Exenatida/farmacocinética , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Peptídeos/metabolismo
2.
Am J Physiol Renal Physiol ; 320(1): F114-F129, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33283642

RESUMO

Chronic kidney disease results in high serum urea concentrations leading to excessive protein carbamylation, primarily albumin. This is associated with increased cardiovascular disease and mortality. Multiple methods were used to address whether carbamylation alters albumin metabolism. Intravital two-photon imaging of the Munich Wistar Frömter (MWF) rat kidney and liver allowed us to characterize filtration and proximal tubule uptake and liver uptake. Microscale thermophoresis enabled quantification of cubilin (CUB7,8 domain) and FcRn binding. Finally, multiple biophysical methods including dynamic light scattering, small-angle X-ray scattering, LC-MS/MS and in silico analyses were used to identify the critical structural alterations and amino acid modifications of rat albumin. Carbamylation of albumin reduced binding to CUB7,8 and FcRn in a dose-dependent fashion. Carbamylation markedly increased vascular clearance of carbamylated rat serum albumin (cRSA) and altered distribution of cRSA in both the kidney and liver at 16 h post intravenous injection. By evaluating the time course of carbamylation and associated charge, size, shape, and binding parameters in combination with in silico analysis and mass spectrometry, the critical binding interaction impacting carbamylated albumin's reduced FcRn binding was identified as K524. Carbamylation of RSA had no effect on glomerular filtration or proximal tubule uptake. These data indicate urea-mediated time-dependent carbamylation of albumin lysine K524 resulted in reduced binding to CUB7,8 and FcRn that contribute to altered albumin transport, leading to increased vascular clearance and increased liver and endothelial tissue accumulation.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Túbulos Renais Proximais/metabolismo , Fígado/metabolismo , Receptores Fc/metabolismo , Insuficiência Renal Crônica/metabolismo , Albumina Sérica/metabolismo , Animais , Cromatografia Líquida , Modelos Animais de Doenças , Taxa de Filtração Glomerular , Túbulos Renais Proximais/fisiopatologia , Lisina , Masculino , Microscopia de Fluorescência por Excitação Multifotônica , Ligação Proteica , Carbamilação de Proteínas , Ratos Endogâmicos , Ratos Sprague-Dawley , Receptores de Superfície Celular/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/fisiopatologia , Espalhamento a Baixo Ângulo , Espectrometria de Massas em Tandem , Fatores de Tempo , Difração de Raios X
3.
J Am Soc Nephrol ; 28(7): 2081-2092, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28122967

RESUMO

Highly aerobic organs like the kidney are innately susceptible to ischemia-reperfusion (I/R) injury, which can originate from sources including myocardial infarction, renal trauma, and transplant. Therapy is mainly supportive and depends on the cause(s) of damage. In the absence of hypervolemia, intravenous fluid delivery is frequently the first course of treatment but does not reverse established AKI. Evidence suggests that disrupting leukocyte adhesion may prevent the impairment of renal microvascular perfusion and the heightened inflammatory response that exacerbate ischemic renal injury. We investigated the therapeutic potential of hydrodynamic isotonic fluid delivery (HIFD) to the left renal vein 24 hours after inducing moderate-to-severe unilateral IRI in rats. HIFD significantly increased hydrostatic pressure within the renal vein. When conducted after established AKI, 24 hours after I/R injury, HIFD produced substantial and statistically significant decreases in serum creatinine levels compared with levels in animals given an equivalent volume of saline via peripheral infusion (P<0.05). Intravital confocal microscopy performed immediately after HIFD showed improved microvascular perfusion. Notably, HIFD also resulted in immediate enhancement of parenchymal labeling with the fluorescent dye Hoechst 33342. HIFD also associated with a significant reduction in the accumulation of renal leukocytes, including proinflammatory T cells. Additionally, HIFD significantly reduced peritubular capillary erythrocyte congestion and improved histologic scores of tubular injury 4 days after IRI. Taken together, these results indicate that HIFD performed after establishment of AKI rapidly restores microvascular perfusion and small molecule accessibility, with improvement in overall renal function.


Assuntos
Hidratação/métodos , Hidrodinâmica , Soluções Isotônicas/administração & dosagem , Rim/irrigação sanguínea , Traumatismo por Reperfusão/terapia , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença
4.
J Am Soc Nephrol ; 28(6): 1741-1752, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28062569

RESUMO

Ischemia-reperfusion injury (IRI) is a leading cause of AKI. This common clinical complication lacks effective therapies and can lead to the development of CKD. The αvß5 integrin may have an important role in acute injury, including septic shock and acute lung injury. To examine its function in AKI, we utilized a specific function-blocking antibody to inhibit αvß5 in a rat model of renal IRI. Pretreatment with this anti-αvß5 antibody significantly reduced serum creatinine levels, diminished renal damage detected by histopathologic evaluation, and decreased levels of injury biomarkers. Notably, therapeutic treatment with the αvß5 antibody 8 hours after IRI also provided protection from injury. Global gene expression profiling of post-ischemic kidneys showed that αvß5 inhibition affected established injury markers and induced pathway alterations previously shown to be protective. Intravital imaging of post-ischemic kidneys revealed reduced vascular leak with αvß5 antibody treatment. Immunostaining for αvß5 in the kidney detected evident expression in perivascular cells, with negligible expression in the endothelium. Studies in a three-dimensional microfluidics system identified a pericyte-dependent role for αvß5 in modulating vascular leak. Additional studies showed αvß5 functions in the adhesion and migration of kidney pericytes in vitro Initial studies monitoring renal blood flow after IRI did not find significant effects with αvß5 inhibition; however, future studies should explore the contribution of vasomotor effects. These studies identify a role for αvß5 in modulating injury-induced renal vascular leak, possibly through effects on pericyte adhesion and migration, and reveal αvß5 inhibition as a promising therapeutic strategy for AKI.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Rim/irrigação sanguínea , Receptores de Vitronectina/antagonistas & inibidores , Traumatismo por Reperfusão/prevenção & controle , Animais , Masculino , Ratos , Ratos Sprague-Dawley
5.
Am J Physiol Renal Physiol ; 313(2): F163-F173, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28404591

RESUMO

Hypertension is one of the most prevalent diseases worldwide and a major risk factor for renal failure and cardiovascular disease. The role of albuminuria, a common feature of hypertension and robust predictor of cardiorenal disorders, remains incompletely understood. The goal of this study was to investigate the mechanisms leading to albuminuria in the kidney of a rat model of hypertension, the Dahl salt-sensitive (SS) rat. To determine the relative contributions of the glomerulus and proximal tubule (PT) to albuminuria, we applied intravital two-photon-based imaging to investigate the complex renal physiological changes that occur during salt-induced hypertension. Following a high-salt diet, SS rats exhibited elevated blood pressure, increased glomerular sieving of albumin (GSCalb = 0.0686), relative permeability to albumin (+Δ16%), and impaired volume hemodynamics (-Δ14%). Serum albumin but not serum globulins or creatinine concentration was decreased (-0.54 g/dl), which was concomitant with increased filtration of albumin (3.7 vs. 0.8 g/day normal diet). Pathologically, hypertensive animals had significant tubular damage, as indicated by increased prevalence of granular casts, expansion and necrosis of PT epithelial cells (+Δ2.20 score/image), progressive augmentation of red blood cell velocity (+Δ269 µm/s) and micro vessel diameter (+Δ4.3 µm), and increased vascular injury (+Δ0.61 leakage/image). Therefore, development of salt-induced hypertension can be triggered by fast and progressive pathogenic remodeling of PT epithelia, which can be associated with changes in albumin handling. Collectively, these results indicate that both the glomerulus and the PT contribute to albuminuria, and dual treatment of glomerular filtration and albumin reabsorption may represent an effective treatment of salt-sensitive hypertension.


Assuntos
Albuminúria/etiologia , Pressão Sanguínea , Hipertensão/etiologia , Microscopia Intravital , Glomérulos Renais/patologia , Túbulos Renais Proximais/patologia , Microscopia de Fluorescência por Excitação Multifotônica , Albuminúria/sangue , Albuminúria/patologia , Albuminúria/fisiopatologia , Animais , Modelos Animais de Doenças , Taxa de Filtração Glomerular , Hipertensão/sangue , Hipertensão/patologia , Hipertensão/fisiopatologia , Glomérulos Renais/metabolismo , Glomérulos Renais/fisiopatologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/fisiopatologia , Ratos Endogâmicos Dahl , Reabsorção Renal , Albumina Sérica/metabolismo , Cloreto de Sódio na Dieta , Fatores de Tempo
6.
J Am Soc Nephrol ; 27(2): 482-94, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26054544

RESUMO

Evidence from multiple studies supports the concept that both glomerular filtration and proximal tubule (PT) reclamation affect urinary albumin excretion rate. To better understand these roles of glomerular filtration and PT uptake, we investigated these processes in two distinct animal models. In a rat model of acute exogenous albumin overload, we quantified glomerular sieving coefficients (GSC) and PT uptake of Texas Red-labeled rat serum albumin using two-photon intravital microscopy. No change in GSC was observed, but a significant decrease in PT albumin uptake was quantified. In a second model, loss of endogenous albumin was induced in rats by podocyte-specific transgenic expression of diphtheria toxin receptor. In these albumin-deficient rats, exposure to diphtheria toxin induced an increase in albumin GSC and albumin filtration, resulting in increased exposure of the PTs to endogenous albumin. In this case, PT albumin reabsorption was markedly increased. Analysis of known albumin receptors and assessment of cortical protein expression in the albumin overload model, conducted to identify potential proteins and pathways affected by acute protein overload, revealed changes in the expression levels of calreticulin, disabled homolog 2, NRF2, angiopoietin-2, and proteins involved in ATP synthesis. Taken together, these results suggest that a regulated PT cell albumin uptake system can respond rapidly to different physiologic conditions to minimize alterations in serum albumin level.


Assuntos
Albuminas/farmacocinética , Túbulos Renais Proximais/metabolismo , Animais , Feminino , Túbulos Renais Proximais/fisiologia , Ratos , Ratos Wistar
7.
Am J Physiol Renal Physiol ; 310(10): F1089-102, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26887834

RESUMO

Serum albumin is the most abundant plasma protein and has a long half-life due to neonatal Fc receptor (FcRn)-mediated transcytosis by many cell types, including proximal tubule cells of the kidney. Albumin also interacts with, and is modified by, many small and large molecules. Therefore, the focus of the present study was to address the impact of specific known biological albumin modifications on albumin-FcRn binding and cellular handling. Binding at pH 6.0 and 7.4 was performed since FcRn binds albumin strongly at acidic pH and releases it after transcytosis at physiological pH. Equilibrium dissociation constants were measured using microscale thermophoresis. Since studies have shown that glycated albumin is excreted in the urine at a higher rate than unmodified albumin, we studied glucose and methylgloxal modified albumins (21 days). All had reduced affinity to FcRn at pH 6.0, suggesting these albumins would not be returned to the circulation via the transcytotic pathway. To address why modified albumin has reduced affinity, we analyzed the structure of the modified albumins using small-angle X-ray scattering. This analysis showed significant structural changes occurring to albumin with glycation, particularly in the FcRn-binding region, which could explain the reduced affinity to FcRn. These results offer an explanation for enhanced proximal tubule-mediated sorting and clearance of abnormal albumins.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Túbulos Renais Proximais/metabolismo , Receptores Fc/metabolismo , Albumina Sérica/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Produtos Finais de Glicação Avançada , Humanos , Imunoglobulina G/metabolismo , Glomérulos Renais/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Espalhamento a Baixo Ângulo , Albumina Sérica/química , Difração de Raios X , Albumina Sérica Glicada
8.
Am J Physiol Renal Physiol ; 308(6): F588-93, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25587117

RESUMO

Loss of significant functional renal mass results in compensatory structural and hemodynamic adaptations in the nephron. While these changes have been characterized in several injury models, how they affect hemodynamic forces at the glomerular capillary wall has not been adequately characterized, despite their potential physiological significance. Therefore, we used intravital multiphoton microscopy to measure the velocity of red blood cells in individual glomerular capillaries of normal rats and rats subjected to ⅚ nephrectomy. Glomerular capillary blood flow rate and wall shear stress were then estimated using previously established experimental and mathematical models to account for changes in hematocrit and blood rheology in small vessels. We found little change in the hemodynamic parameters in glomerular capillaries immediately following injury. At 2 wk postnephrectomy, significant changes in individual capillary blood flow velocity and volume flow rate were present. Despite these changes, estimated capillary wall shear stress was unchanged. This was a result of an increase in capillary diameter and changes in capillary blood rheology in nephrectomized rats.


Assuntos
Capilares/fisiologia , Hemorreologia , Glomérulos Renais/fisiologia , Circulação Renal , Insuficiência Renal/fisiopatologia , Animais , Pressão Sanguínea , Hematócrito , Masculino , Nefrectomia , Ratos Wistar , Estresse Mecânico
9.
J Am Soc Nephrol ; 23(3): 447-57, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22223875

RESUMO

Different laboratories recently reported incongruous results describing the quantification of albumin filtration using two-photon microscopy. We investigated the factors that influence the glomerular sieving coefficient for albumin (GSC(A)) in an effort to explain these discordant reports and to develop standard operating procedures for determining GSC(A). Multiple factors influenced GSC(A), including the kidney depth of image acquisition (10-20 µm was appropriate), the selection of fluorophore (probes emitting longer wavelengths were superior), the selection of plasma regions for fluorescence measurements, the size and molecular dispersion characteristics of dextran polymers if used, dietary status, and the genetic strain of rat. Fasting reduced the GSC(A) in Simonsen Munich Wistar rats from 0.035±0.005 to 0.016±0.004 (P<0.01). Frömter Munich Wistar rats had a much lower GSC(A) in both the fed and the fasted states. Finally, we documented extensive albumin transcytosis with vesicular and tubular delivery to and fusion with the basolateral membrane in S1 proximal tubule cells. In summary, these results help explain the previously conflicting microscopy and micropuncture data describing albumin filtration and highlight the dynamic nature of glomerular albumin permeability.


Assuntos
Albuminas/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Glomérulos Renais/citologia , Glomérulos Renais/fisiologia , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/fisiologia , Animais , Dextranos , Dieta , Feminino , Corantes Fluorescentes , Masculino , Microscopia de Fluorescência por Excitação Multifotônica , Modelos Animais , Punções , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Fatores de Tempo
10.
J Vis Exp ; (181)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35311826

RESUMO

Applying novel microscopy methods to suitable animal disease models to explore the dynamic physiology of the kidney remains a challenge. Rats with surface glomeruli provide a unique opportunity to investigate physiological and pathophysiological processes using intravital 2-photon microscopy. Quantification of glomerular capillary blood flow and vasoconstriction and dilatation in response to drugs, permeability, and inflammation are just some of the processes that can be studied. In addition, transgenic rats, i.e., podocytes labeled with fluorescent dyes and other molecular biomarker approaches, provide increased resolution to directly monitor and quantify protein-protein interactions and the effects of specific molecular alterations. In mice, which lack surface glomeruli after four weeks of age, unilateral ureteral obstruction (UUO) for several weeks has been used to induce surface glomeruli. As this induction model does not allow for baseline studies, we quantified the effects of UUO on glomerular processes in the UUO model in Munich Wistar Frömter (MWF) rats, which have surface glomeruli under physiologic conditions. The UUO model for five weeks or more induced significant alterations to gross renal morphology, the peritubular and glomerular microvasculature, as well as the structure and function of tubular epithelia. Glomerular and peritubular red blood cell (RBC) flow decreased significantly (p < 0.01), probably due to the significant increase in the adherence of white blood cells (WBCs) within glomerular and peritubular capillaries. The glomerular sieving coefficient of albumin increased from 0.015 ± 0.002 in untreated MWFs to 0.045 ± 0.05 in 5-week-old UUO MWF rats. Twelve weeks of UUO resulted in further increases in surface glomerular density and glomerular sieving coefficient (GSC) for albumin. Fluorescent albumin filtered across the glomeruli was not reabsorbed by the proximal tubules. These data suggest that using UUO to induce surface glomeruli limits the ability to study and interpret normal glomerular processes and disease alterations.


Assuntos
Obstrução Ureteral , Animais , Taxa de Filtração Glomerular , Rim/metabolismo , Glomérulos Renais/metabolismo , Camundongos , Microscopia , Ratos , Ratos Wistar
11.
Front Med (Lausanne) ; 9: 931293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966871

RESUMO

Adenosine triphosphate (ATP) released from injured or dying cells is a potent pro-inflammatory "danger" signal. Alkaline phosphatase (AP), an endogenous enzyme that de-phosphorylates extracellular ATP, likely plays an anti-inflammatory role in immune responses. We hypothesized that ilofotase alfa, a human recombinant AP, protects kidneys from ischemia-reperfusion injury (IRI), a model of acute kidney injury (AKI), by metabolizing extracellular ATP to adenosine, which is known to activate adenosine receptors. Ilofotase alfa (iv) with or without ZM241,385 (sc), a selective adenosine A2A receptor (A2AR) antagonist, was administered 1 h before bilateral IRI in WT, A2AR KO (Adora2a-/- ) or CD73-/- mice. In additional studies recombinant alkaline phosphatase was given after IRI. In an AKI-on-chronic kidney disease (CKD) ischemic rat model, ilofotase alfa was given after the three instances of IRI and rats were followed for 56 days. Ilofotase alfa in a dose dependent manner decreased IRI in WT mice, an effect prevented by ZM241,385 and partially prevented in Adora2a-/- mice. Enzymatically inactive ilofotase alfa was not protective. Ilofotase alfa rescued CD73-/- mice, which lack a 5'-ectonucleotidase that dephosphorylates AMP to adenosine; ZM241,385 inhibited that protection. In both rats and mice ilofotase alfa ameliorated IRI when administered after injury, thus providing relevance for therapeutic dosing of ilofotase alfa following established AKI. In an AKI-on-CKD ischemic rat model, ilofotase alfa given after the third instance of IRI reduced injury. These results suggest that ilofotase alfa promotes production of adenosine from liberated ATP in injured kidney tissue, thereby amplifying endogenous mechanisms that can reverse tissue injury, in part through A2AR-and non-A2AR-dependent signaling pathways.

12.
Life Sci ; 91(13-14): 634-7, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22727794

RESUMO

AIM: We have previously found that chronic endothelin-1 (ET-1) infusion in Sprague-Dawley rats increases glomerular permeability to albumin (P(alb)) as assessed in vitro independent of blood pressure with no observed albuminuria. In this study, we hypothesized that ET-1 increases glomerular albumin filtration with accompanied increase in albumin uptake via the proximal tubule, which masks the expected increase in urinary albumin excretion. MAIN METHODS: Nonfasting Munich-Wistar Fromter rats were surgically prepared for in vivo imaging (n=6). Rats were placed on the microscope stage with the exposed kidney placed in a cover slip-bottomed dish bathed in warm isotonic saline. Rats were then injected i.v. with rat serum albumin conjugated to Texas Red that was observed to enter capillary loops of superficial glomeruli, move into Bowman's space, bind to the proximal tubular cell brush border and reabsorbed across the apical membrane. Glomerular sieving coefficient (GSC) was calculated as the ratio of conjugated albumin within the glomerular capillary versus that in Bowman's space. Rats were again studied after 2 weeks of chronic ET-1 (2 pmol/kg/min; i.v. osmotic minipump). KEY FINDINGS: Glomerular sieving coefficient was significantly increased in rats following chronic ET-1 infusion (0.025 ± 0.005 vs. 0.017 ± 0.003, p<0.05). Mean fluorescence intensity for conjugated albumin within proximal tubules was increased by ET-1 infusion: 118.40 ± 6.34 vs. 74.27 ± 4.45 pixel intensity (p<0.01). SIGNIFICANCE: These data provide in vivo evidence that ET-1 directly increases glomerular permeability to albumin and that albuminuria is prevented by increased PT albumin uptake in the rat.


Assuntos
Endotelina-1/metabolismo , Glomérulos Renais/metabolismo , Túbulos Renais Proximais/metabolismo , Albumina Sérica/metabolismo , Animais , Cápsula Glomerular/metabolismo , Endotelina-1/administração & dosagem , Masculino , Microscopia de Fluorescência por Excitação Multifotônica , Permeabilidade , Ratos , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA