Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 15(4): e2001069, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28414715

RESUMO

Many organisms exhibit temporal rhythms in gene expression that propel diurnal cycles in physiology. In the liver of mammals, these rhythms are controlled by transcription-translation feedback loops of the core circadian clock and by feeding-fasting cycles. To better understand the regulatory interplay between the circadian clock and feeding rhythms, we mapped DNase I hypersensitive sites (DHSs) in the mouse liver during a diurnal cycle. The intensity of DNase I cleavages cycled at a substantial fraction of all DHSs, suggesting that DHSs harbor regulatory elements that control rhythmic transcription. Using chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq), we found that hypersensitivity cycled in phase with RNA polymerase II (Pol II) loading and H3K27ac histone marks. We then combined the DHSs with temporal Pol II profiles in wild-type (WT) and Bmal1-/- livers to computationally identify transcription factors through which the core clock and feeding-fasting cycles control diurnal rhythms in transcription. While a similar number of mRNAs accumulated rhythmically in Bmal1-/- compared to WT livers, the amplitudes in Bmal1-/- were generally lower. The residual rhythms in Bmal1-/- reflected transcriptional regulators mediating feeding-fasting responses as well as responses to rhythmic systemic signals. Finally, the analysis of DNase I cuts at nucleotide resolution showed dynamically changing footprints consistent with dynamic binding of CLOCK:BMAL1 complexes. Structural modeling suggested that these footprints are driven by a transient heterotetramer binding configuration at peak activity. Together, our temporal DNase I mappings allowed us to decipher the global regulation of diurnal transcription rhythms in the mouse liver.


Assuntos
Ritmo Circadiano/genética , Regulação da Expressão Gênica , Fígado/fisiologia , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Imunoprecipitação da Cromatina , Relógios Circadianos/genética , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Jejum , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multiproteicos/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/genética , Fatores de Transcrição/genética , Transcrição Gênica
2.
Genome Res ; 24(7): 1157-68, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24709819

RESUMO

Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) experiments are widely used to determine, within entire genomes, the occupancy sites of any protein of interest, including, for example, transcription factors, RNA polymerases, or histones with or without various modifications. In addition to allowing the determination of occupancy sites within one cell type and under one condition, this method allows, in principle, the establishment and comparison of occupancy maps in various cell types, tissues, and conditions. Such comparisons require, however, that samples be normalized. Widely used normalization methods that include a quantile normalization step perform well when factor occupancy varies at a subset of sites, but may miss uniform genome-wide increases or decreases in site occupancy. We describe a spike adjustment procedure (SAP) that, unlike commonly used normalization methods intervening at the analysis stage, entails an experimental step prior to immunoprecipitation. A constant, low amount from a single batch of chromatin of a foreign genome is added to the experimental chromatin. This "spike" chromatin then serves as an internal control to which the experimental signals can be adjusted. We show that the method improves similarity between replicates and reveals biological differences including global and largely uniform changes.


Assuntos
Imunoprecipitação da Cromatina/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Animais , Cromatina/genética , Cromatina/metabolismo , Imunoprecipitação da Cromatina/normas , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Camundongos , Controle de Qualidade , Padrões de Referência , Reprodutibilidade dos Testes
3.
PLoS Genet ; 10(3): e1004155, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24603613

RESUMO

In mammals, the circadian clock allows them to anticipate and adapt physiology around the 24 hours. Conversely, metabolism and food consumption regulate the internal clock, pointing the existence of an intricate relationship between nutrient state and circadian homeostasis that is far from being understood. The Sterol Regulatory Element Binding Protein 1 (SREBP1) is a key regulator of lipid homeostasis. Hepatic SREBP1 function is influenced by the nutrient-response cycle, but also by the circadian machinery. To systematically understand how the interplay of circadian clock and nutrient-driven rhythm regulates SREBP1 activity, we evaluated the genome-wide binding of SREBP1 to its targets throughout the day in C57BL/6 mice. The recruitment of SREBP1 to the DNA showed a highly circadian behaviour, with a maximum during the fed status. However, the temporal expression of SREBP1 targets was not always synchronized with its binding pattern. In particular, different expression phases were observed for SREBP1 target genes depending on their function, suggesting the involvement of other transcription factors in their regulation. Binding sites for Hepatocyte Nuclear Factor 4 (HNF4) were specifically enriched in the close proximity of SREBP1 peaks of genes, whose expression was shifted by about 8 hours with respect to SREBP1 binding. Thus, the cross-talk between hepatic HNF4 and SREBP1 may underlie the expression timing of this subgroup of SREBP1 targets. Interestingly, the proper temporal expression profile of these genes was dramatically changed in Bmal1-/- mice upon time-restricted feeding, for which a rhythmic, but slightly delayed, binding of SREBP1 was maintained. Collectively, our results show that besides the nutrient-driven regulation of SREBP1 nuclear translocation, a second layer of modulation of SREBP1 transcriptional activity, strongly dependent from the circadian clock, exists. This system allows us to fine tune the expression timing of SREBP1 target genes, thus helping to temporally separate the different physiological processes in which these genes are involved.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Metabolismo dos Lipídeos/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Animais , Sítios de Ligação , Proteínas CLOCK/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica , Genoma , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Homeostase , Camundongos , Ligação Proteica
4.
Genome Res ; 22(4): 666-80, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22287103

RESUMO

The genomic loci occupied by RNA polymerase (RNAP) III have been characterized in human culture cells by genome-wide chromatin immunoprecipitations, followed by deep sequencing (ChIP-seq). These studies have shown that only ∼40% of the annotated 622 human tRNA genes and pseudogenes are occupied by RNAP-III, and that these genes are often in open chromatin regions rich in active RNAP-II transcription units. We have used ChIP-seq to characterize RNAP-III-occupied loci in a differentiated tissue, the mouse liver. Our studies define the mouse liver RNAP-III-occupied loci including a conserved mammalian interspersed repeat (MIR) as a potential regulator of an RNAP-III subunit-encoding gene. They reveal that synteny relationships can be established between a number of human and mouse RNAP-III genes, and that the expression levels of these genes are significantly linked. They establish that variations within the A and B promoter boxes, as well as the strength of the terminator sequence, can strongly affect RNAP-III occupancy of tRNA genes. They reveal correlations with various genomic features that explain the observed variation of 81% of tRNA scores. In mouse liver, loci represented in the NCBI37/mm9 genome assembly that are clearly occupied by RNAP-III comprise 50 Rn5s (5S RNA) genes, 14 known non-tRNA RNAP-III genes, nine Rn4.5s (4.5S RNA) genes, and 29 SINEs. Moreover, out of the 433 annotated tRNA genes, half are occupied by RNAP-III. Transfer RNA gene expression levels reflect both an underlying genomic organization conserved in dividing human culture cells and resting mouse liver cells, and the particular promoter and terminator strengths of individual genes.


Assuntos
Perfilação da Expressão Gênica , Genômica/métodos , Fígado/metabolismo , RNA Polimerase III/genética , Animais , Imunoprecipitação da Cromatina/métodos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Polimerase III/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Análise de Sequência de DNA/métodos
5.
PLoS Biol ; 10(11): e1001442, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209382

RESUMO

Interactions of cell-autonomous circadian oscillators with diurnal cycles govern the temporal compartmentalization of cell physiology in mammals. To understand the transcriptional and epigenetic basis of diurnal rhythms in mouse liver genome-wide, we generated temporal DNA occupancy profiles by RNA polymerase II (Pol II) as well as profiles of the histone modifications H3K4me3 and H3K36me3. We used these data to quantify the relationships of phases and amplitudes between different marks. We found that rhythmic Pol II recruitment at promoters rather than rhythmic transition from paused to productive elongation underlies diurnal gene transcription, a conclusion further supported by modeling. Moreover, Pol II occupancy preceded mRNA accumulation by 3 hours, consistent with mRNA half-lives. Both methylation marks showed that the epigenetic landscape is highly dynamic and globally remodeled during the 24-hour cycle. While promoters of transcribed genes had tri-methylated H3K4 even at their trough activity times, tri-methylation levels reached their peak, on average, 1 hour after Pol II. Meanwhile, rhythms in tri-methylation of H3K36 lagged transcription by 3 hours. Finally, modeling profiles of Pol II occupancy and mRNA accumulation identified three classes of genes: one showing rhythmicity both in transcriptional and mRNA accumulation, a second class with rhythmic transcription but flat mRNA levels, and a third with constant transcription but rhythmic mRNAs. The latter class emphasizes widespread temporally gated posttranscriptional regulation in the mouse liver.


Assuntos
Ritmo Circadiano , Epigênese Genética , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , Transcrição Gênica , Animais , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Metilação de DNA , Meia-Vida , Histonas/genética , Histonas/metabolismo , Cinética , Fígado/citologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Genéticos , Regiões Promotoras Genéticas , RNA Polimerase II/genética , Processamento Pós-Transcricional do RNA , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Sítio de Iniciação de Transcrição , Transcriptoma
6.
PLoS Genet ; 8(11): e1003028, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166507

RESUMO

SNAP(c) is one of a few basal transcription factors used by both RNA polymerase (pol) II and pol III. To define the set of active SNAP(c)-dependent promoters in human cells, we have localized genome-wide four SNAP(c) subunits, GTF2B (TFIIB), BRF2, pol II, and pol III. Among some seventy loci occupied by SNAP(c) and other factors, including pol II snRNA genes, pol III genes with type 3 promoters, and a few un-annotated loci, most are primarily occupied by either pol II and GTF2B, or pol III and BRF2. A notable exception is the RPPH1 gene, which is occupied by significant amounts of both polymerases. We show that the large majority of SNAP(c)-dependent promoters recruit POU2F1 and/or ZNF143 on their enhancer region, and a subset also recruits GABP, a factor newly implicated in SNAP(c)-dependent transcription. These activators associate with pol II and III promoters in G1 slightly before the polymerase, and ZNF143 is required for efficient transcription initiation complex assembly. The results characterize a set of genes with unique properties and establish that polymerase specificity is not absolute in vivo.


Assuntos
Regiões Promotoras Genéticas , RNA Polimerase III , RNA Polimerase II , Fatores de Transcrição , Proteínas de Ligação a DNA/genética , Genoma Humano , Humanos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , RNA Nuclear Pequeno/genética , Sequências Reguladoras de Ácido Nucleico , Fator de Transcrição TFIIB/genética , Fator de Transcrição TFIIB/metabolismo , Fator de Transcrição TFIIIB/genética , Fator de Transcrição TFIIIB/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Genome Res ; 20(6): 710-21, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20413673

RESUMO

Our view of the RNA polymerase III (Pol III) transcription machinery in mammalian cells arises mostly from studies of the RN5S (5S) gene, the Ad2 VAI gene, and the RNU6 (U6) gene, as paradigms for genes with type 1, 2, and 3 promoters. Recruitment of Pol III onto these genes requires prior binding of well-characterized transcription factors. Technical limitations in dealing with repeated genomic units, typically found at mammalian Pol III genes, have so far hampered genome-wide studies of the Pol III transcription machinery and transcriptome. We have localized, genome-wide, Pol III and some of its transcription factors. Our results reveal broad usage of the known Pol III transcription machinery and define a minimal Pol III transcriptome in dividing IMR90hTert fibroblasts. This transcriptome consists of some 500 actively transcribed genes including a few dozen candidate novel genes, of which we confirmed nine as Pol III transcription units by additional methods. It does not contain any of the microRNA genes previously described as transcribed by Pol III, but reveals two other microRNA genes, MIR886 (hsa-mir-886) and MIR1975 (RNY5, hY5, hsa-mir-1975), which are genuine Pol III transcription units.


Assuntos
Perfilação da Expressão Gênica , Genoma Humano , RNA Polimerase III/genética , Sequência de Bases , Humanos , Dados de Sequência Molecular , RNA de Transferência/genética
8.
Biochim Biophys Acta ; 1799(5-6): 454-62, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19948259

RESUMO

The CBF/DREB1 transcriptional activators are key regulators of plant freezing tolerance. They are members of the AP2/ERF multi-gene family, which in Arabidopsis comprises about 145 members. Common to these proteins is the AP2/ERF DNA-binding domain, a 60-amino-acid fold composed of a three-stranded beta-sheet followed by a C-terminal alpha-helix. A feature that distinguishes the CBF proteins from the other AP2/ERF proteins is the presence of "signature sequences," PKKP/RAGRxKFxETRHP (abbreviated PKKPAGR) and DSAWR, which are located immediately upstream and downstream, respectively, of the AP2/ERF DNA-binding domain. The signature sequences are highly conserved in CBF proteins from diverse plant species suggesting that they have an important functional role. Here we show that the PKKPAGR sequence of AtCBF1 is essential for its transcriptional activity. Deletion of the sequence or mutations within it greatly impaired the ability of CBF1 to induce expression of its target genes. This impairment was not due to the mutations eliminating CBF1 localization to the nucleus or preventing protein accumulation. Rather, we show that this loss of function was due to the mutations greatly impairing the ability of the CBF1 protein to bind to its DNA recognition sequence, the CRT/DRE element. These results establish that the ability of the CBF proteins to bind to the CRT/DRE element requires amino acids that extend beyond the AP2/ERF DNA-binding domain and raise the possibility that the PKKPAGR sequence contributes to determining the DNA-binding specificity of the CBF proteins.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , DNA de Plantas/genética , DNA de Plantas/metabolismo , Transativadores/genética , Transativadores/metabolismo , Aclimatação/genética , Aclimatação/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Arabidopsis/química , Sequência de Bases , Sítios de Ligação/genética , Clima Frio , Primers do DNA/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Plantas Geneticamente Modificadas , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Elementos Reguladores de Transcrição , Deleção de Sequência , Transativadores/química
9.
Mob DNA ; 3(1): 11, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22716230

RESUMO

BACKGROUND: The vast majority of the 1.1 million Alu elements are retrotranspositionally inactive, where only a few loci referred to as 'source elements' can generate new Alu insertions. The first step in identifying the active Alu sources is to determine the loci transcribed by RNA polymerase III (pol III). Previous genome-wide analyses from normal and transformed cell lines identified multiple Alu loci occupied by pol III factors, making them candidate source elements. FINDINGS: Analysis of the data from these genome-wide studies determined that the majority of pol III-bound Alus belonged to the older subfamilies Alu S and Alu J, which varied between cell lines from 62.5% to 98.7% of the identified loci. The pol III-bound Alus were further scored for estimated retrotransposition potential (ERP) based on the absence or presence of selected sequence features associated with Alu retrotransposition capability. Our analyses indicate that most of the pol III-bound Alu loci candidates identified lack the sequence characteristics important for retrotransposition. CONCLUSIONS: These data suggest that Alu expression likely varies by cell type, growth conditions and transformation state. This variation could extend to where the same cell lines in different laboratories present different Alu expression patterns. The vast majority of Alu loci potentially transcribed by RNA pol III lack important sequence features for retrotransposition and the majority of potentially active Alu loci in the genome (scored high ERP) belong to young Alu subfamilies. Our observations suggest that in an in vivo scenario, the contribution of Alu activity on somatic genetic damage may significantly vary between individuals and tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA