Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(9): 817, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39147999

RESUMO

Salt marshes act as natural barriers that reduce wave energy during storm events and help protect coastal communities located in low-lying areas. This ecosystem can be an important asset for climate adaptation due to its particular capability of vertically accrete to adjust to long-term changes in water levels. Therefore, understanding marsh protection benefits thresholds in the face of sea-level rise (SLR) is important for planning future climate adaptation. In this context, the main goal of this manuscript is to examine how the storm protection benefits provided by salt marshes might evolve under SLR projections with different probability levels and emission pathways. In this study, a modeling framework that employs marsh migration predictions from the Sea Level Affecting Marshes Model (SLAMM) as parameterization into a hydrodynamic and wave model (ADCIRC + SWAN) was utilized to explicitly represent wave attenuation by vegetation under storm surge conditions. SLAMM predictions indicate that the SLR scenario, a combination of probability level and emission pathways, plays a substantial role in determining future marsh migration or marsh area loss. For example, results based on the 50% probability, stabilized emissions scenario show an increase of 45% in the marsh area on Maryland's Lower Eastern Shore by 2100, whereas Dorchester County alone could experience a 75% reduction in total salt marsh areas by 2100 under the 1% probability, growing emissions scenario. ADCIRC + SWAN results using SLAMM land cover and elevation outputs indicate that distinct temporal thresholds emerge where marsh extent sharply decreases and wave heights increase, especially after 2050, and exacerbates further after 2080. These findings can be utilized for guiding environmental policies and to aid informed decisions and actions in response to SLR-driven environmental changes.


Assuntos
Mudança Climática , Monitoramento Ambiental , Elevação do Nível do Mar , Áreas Alagadas , Conservação dos Recursos Naturais , Maryland , Modelos Teóricos
2.
Environ Manage ; 70(6): 950-964, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36208345

RESUMO

Wetland restoration is an important water quality and climate resilience strategy. Wetland restoration rarely considers tradeoffs at large spatial and temporal scales, which limits capacity to aid decision makers. High resolution data can reveal hundreds to thousands of possible restoration options across a landscape, but guidance for setting restoration targets at these scales is limited. This study uses structured decision making (SDM) as a process for evaluating the desirability of numerous restoration options, with a case study on the Outer Coastal Plain of the Chesapeake Bay watershed, USA. The Nature Conservancy, in partnership with federal, state, and nonprofit organizations, evaluated a decision to target large-scale wetland restoration based on two fundamental objectives: improve water quality and enhance climate resilience. A total of 964 potentially restorable alternatives were delineated across the study area. The alternatives were evaluated on seven water quality and climate resilience criteria. High-priority alternatives were mapped based on multi-criteria ranking methods and principal component analysis. Sensitivity analysis included varying nutrient load data, implementing multiple ranking methods with different assumptions, and varying criteria weights. The maps revealed seven distinct regions of restoration opportunities. Tradeoffs were evaluated to distinguish between desirable and less desirable regions. Results indicated that three regions were promising choices to initiate landowner engagement and outreach. This study highlights the advantages of SDM to structure large-scale restoration decisions. In doing so, our work offers a roadmap toward further developing SDM in future applied restoration contexts.


Assuntos
Baías , Áreas Alagadas , Qualidade da Água , Tomada de Decisões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA