Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 428(6979): 145-50, 2004 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15014492

RESUMO

A basic doctrine of reproductive biology is that most mammalian females lose the capacity for germ-cell renewal during fetal life, such that a fixed reserve of germ cells (oocytes) enclosed within follicles is endowed at birth. Here we show that juvenile and adult mouse ovaries possess mitotically active germ cells that, based on rates of oocyte degeneration (atresia) and clearance, are needed to continuously replenish the follicle pool. Consistent with this, treatment of prepubertal female mice with the mitotic germ-cell toxicant busulphan eliminates the primordial follicle reserve by early adulthood without inducing atresia. Furthermore, we demonstrate cells expressing the meiotic entry marker synaptonemal complex protein 3 in juvenile and adult mouse ovaries. Wild-type ovaries grafted into transgenic female mice with ubiquitous expression of green fluorescent protein (GFP) become infiltrated with GFP-positive germ cells that form follicles. Collectively, these data establish the existence of proliferative germ cells that sustain oocyte and follicle production in the postnatal mammalian ovary.


Assuntos
Diferenciação Celular , Oócitos/citologia , Folículo Ovariano/citologia , Folículo Ovariano/crescimento & desenvolvimento , Regeneração/fisiologia , Células-Tronco/citologia , Envelhecimento/fisiologia , Animais , Biomarcadores , Bussulfano/farmacologia , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Meiose/efeitos dos fármacos , Meiose/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oócitos/efeitos dos fármacos , Oócitos/transplante , Oogênese/efeitos dos fármacos , Oogênese/fisiologia , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/transplante , Gravidez , Regeneração/efeitos dos fármacos , Maturidade Sexual , Transplante de Células-Tronco , Células-Tronco/efeitos dos fármacos
2.
Endocrinology ; 144(1): 9-12, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12488324

RESUMO

The laboratory mouse is the model of choice for genetic studies in mammals due to the availability of many genetically defined inbred strains and inbred congenic strains, as well as the ability to study the effects of over-expression (transgenics) or inactivation (knockouts) of a given gene on cells or tissues. During our studies using these technologies to uncover the importance of various genes to apoptosis in the ovary, we observed that the size of the primordial oocyte reserve was affected by mouse strain in the absence of any other genetic manipulation. To determine if genetic modifiers of oocyte endowment truly exist, herein we examined follicle numbers in one outbred (CD-1) and several inbred (129/Sv, DBA/2, C57BL/6, FVB, AKR/J) strains of mice at day 4 (neonatal) and day 42 (young adult) postpartum. In neonatal life, ovaries of AKR/J females had the lowest total number of follicles, whereas 129/Sv females possessed the highest total number of follicles (P < 0.05 for AKR/J versus 129/Sv). There were more primordial follicles in 129/Sv compared with DBA/2 (P < 0.05), C57BL/6 (P < 0.05), FVB (P < 0.05) or AKR/J (P < 0.05) females, and in CD-1 compared with AKR/J (P < 0.05) females. Although no significant strain-dependent differences in primary follicle numbers were noted, C57BL/6 females had the fewest number of small preantral follicles (P < 0.05 versus all other strains). Evaluation of ovaries at 42 days of age revealed the persistence of strain-dependent differences in early follicle growth patterns, although the total numbers of follicles were comparable. Of interest, marked strain-dependent differences in the rate of primordial follicle growth activation, as well as in the rate of follicle loss (atresia), between days 4 and 42 were observed. These results indicate that genetic modifiers play a major role in follicle endowment, development and atresia in the mouse ovary.


Assuntos
Folículo Ovariano/anatomia & histologia , Folículo Ovariano/crescimento & desenvolvimento , Especificidade da Espécie , Envelhecimento , Animais , Apoptose/genética , Feminino , Atresia Folicular/genética , Camundongos , Camundongos Endogâmicos AKR , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA
3.
Endocrinology ; 144(1): 69-74, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12488331

RESUMO

The industrial chemical, 4-vinylcyclohexene diepoxide (VCD), kills oocytes within immature follicles in the ovaries of mice and rats and is considered a potential occupational health hazard. It has been reported that VCD-induced follicle loss occurs via a cell death process involving elevated expression of Bax, a proapoptotic Bcl-2 family member, and increased caspase-3-like activity. We have previously shown that oocytes lacking acid sphingomyelinase (ASMase; an enzyme that generates the proapoptotic stress sensor ceramide), the aromatic hydrocarbon receptor (Ahr), Bax, or caspase-2 are resistant to apoptosis induced by other chemical toxicants. Therefore, this study was designed to investigate the functional importance of ASMase, Ahr, Bax, and caspase-2 as well as the related executioner enzyme caspase-3 to VCD-induced ovotoxicity in mice using gene knockout technology. For each gene mutant mouse line, wild-type and homozygous-null female siblings derived from heterozygous matings were given once-daily ip injections of either vehicle (sesame oil) or VCD (80 mg/kg body weight) for 15 d (three or four mice per treatment group per genotype). Ovaries were collected 24 h after the final injection and analyzed for the total number of nonatretic primordial and primary follicles remaining per ovary. No differences in the extent of primordial or primary follicle destruction resulting from VCD exposure were observed in wild-type vs. ASMase- or Ahr-deficient mice. By contrast, the extent of VCD-induced primordial follicle depletion in Bax-deficient mice (45 +/- 11%) was significantly (P < 0.05) lower than that in wild-type females (85 +/- 2%). The extent of primary follicle loss in bax-null mice exposed to VCD (3 +/- 22%) was also significantly (P < 0.05) lower than that in their wild-type sisters (86 +/- 4%). In caspase-2-deficient mice, significantly (P < 0.05) fewer oocyte-containing primary follicles were destroyed by VCD (17 +/- 19%) vs. wild-type controls (71 +/- 6%); however, no significant difference in the extent of VCD-induced primordial follicle destruction was observed in caspase-2-null vs. wild-type females. Finally, in caspase-3-deficient mice, significantly (P < 0.05) fewer oocyte-containing primary follicles were destroyed by VCD (33 +/- 3%) vs. wild-type controls (71 +/- 2%); however, no significant difference in the extent of VCD-induced primordial follicle destruction was observed in caspase-3-null vs. wild-type females. We conclude that Bax, caspase-2, and caspase-3, but not ASMase or Ahr, are functionally important in VCD-induced follicle loss. However, as a loss of Bax, caspase-2, or caspase-3 function conveyed only partial protection from the ovotoxic effects of VCD, other cell death pathways that either function independently of Bax, caspase-2, and caspase-3 or are not apoptotic in nature are also involved.


Assuntos
Caspases/fisiologia , Cicloexanos/toxicidade , Folículo Ovariano/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas/fisiologia , Animais , Apoptose/efeitos dos fármacos , Caspase 2 , Caspase 3 , Caspases/deficiência , Caspases/genética , Contagem de Células , Cicloexenos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oócitos/efeitos dos fármacos , Oócitos/enzimologia , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Receptores de Hidrocarboneto Arílico/deficiência , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/fisiologia , Especificidade da Espécie , Esfingomielina Fosfodiesterase/deficiência , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/fisiologia , Proteína X Associada a bcl-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA