Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Genet ; 104(6): 705-710, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37553249

RESUMO

Missense mutations in MYOT encoding the sarcomeric Z-disk protein myotilin cause three main myopathic phenotypes including proximal limb-girdle muscular dystrophy, spheroid body myopathy, and late-onset distal myopathy. We describe a family carrying a heterozygous MYOT deletion (Tyr4_His9del) that clinically was characterized by an early-adult onset distal muscle weakness and pathologically by a myofibrillar myopathy (MFM). Molecular modeling of the full-length myotilin protein revealed that the 4-YERPKH-9 amino acids are involved in local interactions within the N-terminal portion of myotilin. Injection of in vitro synthetized mutated human MYOT RNA or of plasmid carrying its cDNA sequence in zebrafish embryos led to muscle defects characterized by sarcomeric disorganization of muscle fibers and widening of the I-band, and severe motor impairments. We identify MYOT novel Tyr4_His9 deletion as the cause of an early-onset MFM with a distal myopathy phenotype and provide data supporting the importance of the amino acid sequence for the structural role of myotilin in the sarcomeric organization of myofibers.


Assuntos
Miopatias Distais , Proteínas Musculares , Adulto , Animais , Humanos , Conectina/genética , Proteínas dos Microfilamentos/genética , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Mutação , Peixe-Zebra
2.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176020

RESUMO

Muscular dystrophies (MDs) are a heterogeneous group of myopathies characterized by progressive muscle weakness leading to death from heart or respiratory failure. MDs are caused by mutations in genes involved in both the development and organization of muscle fibers. Several animal models harboring mutations in MD-associated genes have been developed so far. Together with rodents, the zebrafish is one of the most popular animal models used to reproduce MDs because of the high level of sequence homology with the human genome and its genetic manipulability. This review describes the most important zebrafish mutant models of MD and the most advanced tools used to generate and characterize all these valuable transgenic lines. Zebrafish models of MDs have been generated by introducing mutations to muscle-specific genes with different genetic techniques, such as (i) N-ethyl-N-nitrosourea (ENU) treatment, (ii) the injection of specific morpholino, (iii) tol2-based transgenesis, (iv) TALEN, (v) and CRISPR/Cas9 technology. All these models are extensively used either to study muscle development and function or understand the pathogenetic mechanisms of MDs. Several tools have also been developed to characterize these zebrafish models by checking (i) motor behavior, (ii) muscle fiber structure, (iii) oxidative stress, and (iv) mitochondrial function and dynamics. Further, living biosensor models, based on the expression of fluorescent reporter proteins under the control of muscle-specific promoters or responsive elements, have been revealed to be powerful tools to follow molecular dynamics at the level of a single muscle fiber. Thus, zebrafish models of MDs can also be a powerful tool to search for new drugs or gene therapies able to block or slow down disease progression.


Assuntos
Doenças Musculares , Distrofias Musculares , Animais , Humanos , Peixe-Zebra/genética , Distrofias Musculares/genética , Animais Geneticamente Modificados/genética , Fibras Musculares Esqueléticas/patologia
3.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511242

RESUMO

Myofibrillar myopathies (MFMs) are a group of hereditary neuromuscular disorders sharing common histological features, such as myofibrillar derangement, Z-disk disintegration, and the accumulation of degradation products into protein aggregates. They are caused by mutations in several genes that encode either structural proteins or molecular chaperones. Nevertheless, the mechanisms by which mutated genes result in protein aggregation are still unknown. To unveil the role of myotilin and αB-crystallin in the pathogenesis of MFM, we injected zebrafish fertilized eggs at the one-cell stage with expression plasmids harboring cDNA sequences of human wildtype or mutated MYOT (p.Ser95Ile) and human wildtype or mutated CRYAB (p.Gly154Ser). We evaluated the effects on fish survival, motor behavior, muscle structure and development. We found that transgenic zebrafish showed morphological defects that were more severe in those overexpressing mutant genes. which developed a myopathic phenotype consistent with that of human myofibrillar myopathy, including the formation of protein aggregates. Results indicate that pathogenic mutations in myotilin and αB-crystallin genes associated with MFM cause a structural and functional impairment of the skeletal muscle in zebrafish, thereby making this non-mammalian organism a powerful model to dissect disease pathogenesis and find possible druggable targets.


Assuntos
Cristalinas , Miopatias Congênitas Estruturais , Animais , Humanos , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/metabolismo , Cristalinas/genética , Músculo Esquelético/patologia , Mutação , Miofibrilas/metabolismo , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/metabolismo , Agregados Proteicos , Peixe-Zebra/genética
4.
Genes (Basel) ; 14(1)2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36672776

RESUMO

The LIM and SH3 domain protein 1 (LASP1) was originally identified in metastatic breast cancer and mainly characterized as a cytoskeleton protein overexpressed in various cancer types. At present, little is known about LASP1 expression in physiological conditions, and its function during embryonic development has not been elucidated. Here, we focused on Lasp1 and embryonic development, choosing zebrafish as a vertebrate model. For the first time, we identified and determined the expression of Lasp1 protein at various stages of development, at 48 and 72 h post-fertilization (hpf), at 6 days pf and in different organs of zebrafish adults by Western blotting, 3D light-sheet microscopy and fluorescent immunohistochemistry. Further, we showed that specific lasp1 morpholino (MO) led to (i) abnormal morphants with alterations in several organs, (ii) effective knockdown of endogenous Lasp1 protein and (iii) an increase in lasp1 mRNA, as detected by ddPCR. The co-injection of lasp1 mRNA with lasp1 MO partially rescued morphant phenotypes, thus confirming the specificity of the MO oligonucleotide-induced defects. We also detected an increase in apoptosis following lasp1 MO treatment. Our results suggest a significant role for Lasp1 in embryonic development, highlighting zebrafish as a vertebrate model suitable for studying Lasp1 function in developmental biology and organogenesis.


Assuntos
Neoplasias , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas com Domínio LIM/genética , Desenvolvimento Embrionário/genética , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA