Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Dairy Sci ; 107(7): 4216-4234, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38460870

RESUMO

Cow milk allergy is a common phenomenon experienced in early childhood (<5 yr of age) with an average occurrence rate of roughly 2.5%. The most prevalent allergen in cow milk is believed to be ß-LG. The objective of this study was to evaluate the use of hydrophobic supercritical CO2 (ScCO2) to modify the chemical structure ß-LG, thus impairing its recognition by antibodies. Whole milk powder (WMP) was selected because of its closest compositional resemblance to bovine fluid milk and its applications in reconstitution and in the beverage (infant, toddler, and adult), confectionary, bakery, and meat industries. For this study, WMP was treated with food-grade CO2 at temperatures of 50, 63, and 75°C under operating pressures of 100, 150, 200, 250, and 300 bar. Proteins in WMP were examined using SDS-PAGE, western blot, and ELISA. Orbitrap Fusion liquid chromatography-tandem MS (LC-MS/MS) and periodic staining was performed to confirm post-translational modifications in ß-LG. Functional properties of WMP before and after treatment were assessed by its solubility index, oil holding capacity, emulsion capacity and stability, zeta potential, particle size, and color analysis. SDS-PAGE of treated samples yielded fuzzy bands (variable mobility of molecules due to different molecular weights results in ill-defined bands) indicative of an increase in molecular weight, presumably due to chemical change in the protein, and demonstrated a maximum of 71.13 ± 0.29% decrease in the band intensity of ß-LG under treatment conditions of 75°C/300 bar for 30 min. These changes were small with samples treated with heat only. Lighter, diffused bands were observed using western blot analysis. The ELISA tests proved that ScCO2 treatment specifically and significantly affected the antigenicity of ß-LG with a reduction of 42.9 ± 2.83% and 54.75 ± 2.43% at 63°C/200 bar and 75°C/300 bar, respectively. Orbitrap fusion detected the presence of fatty acids and sugar moieties bound to ß-LG and the latter was confirmed by periodic staining. Functional properties of ScCO2-treated milk powder yielded a decrease in solubility index and an increase in emulsion capacity of WMP was observed under ScCO2 treatment at 75°C/300 bar, with small and insignificant changes at other treatments producing a decrease in antigenicity. Color changes were small for most samples, except at 63°C/200 bar, where a significant increase in yellowness was observed. Zeta potential and particle size measurements indicated that most changes were temperature driven. This study demonstrates 2 approaches to mitigate ß-LG antigenicity via fatty acid binding and lactosylation using hydrophobic ScCO2.


Assuntos
Dióxido de Carbono , Lactoglobulinas , Leite , Animais , Leite/química , Bovinos , Hipersensibilidade a Leite , Pós
2.
J Dairy Sci ; 106(5): 3086-3097, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36935237

RESUMO

The relative immaturity of the infant digestive system has the potential to affect the bioavailability of dietary lipids, proteins, and their digested products. We performed a lipidomic analysis of a commercial bovine milk fat globule membrane ingredient (MFGMi) and determined the profile of lipids and proteins in the bioaccessible fraction after in vitro digestion of both the ingredient and whey-casein-based infant formula without and with MFGMi. Test materials were digested using a static 2-phase in vitro model, with conditions simulating those in the infant gut. The extent of digestion and the bioaccessibility of various classes of neutral and polar lipids were monitored by measuring a wide targeted lipid profile using direct infusion-mass spectrometry. Digestion of abundant proteins in the ingredient and whey-casein infant formula containing the ingredient was determined by denaturing PAGE with imaging of Coomassie Brilliant Blue stained bands. Cholesterol esters, diacylglycerides, triacylglycerides, phosphatidylcholines, and phosphatidylethanolamines in MFGMi were hydrolyzed readily during in vitro digestion, which resulted in marked increases in the amounts of free fatty acids and lyso-phospholipids in the bioaccessible fraction. In contrast, sphingomyelins, ceramides, and gangliosides were largely resistant to simulated digestion. Proteins in MFGMi and the infant formulas also were hydrolyzed efficiently. The results suggest that neutral lipids, cholesterol esters, phospholipids, and proteins in MFGMi are digested efficiently during conditions that simulate the prandial lumen of the stomach and small intestine of infants. Also, supplementation of whey-casein-based infant formula with MFGMi did not appear to alter the profiles of lipids and proteins in the bioaccessible fraction after digestion.


Assuntos
Caseínas , Fórmulas Infantis , Animais , Caseínas/química , Fórmulas Infantis/química , Soro do Leite/metabolismo , Ésteres do Colesterol , Digestão , Proteínas do Soro do Leite , Proteínas do Leite/metabolismo
3.
J Dairy Sci ; 105(5): 3703-3715, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35221067

RESUMO

Kefir is a fermented dairy product with well recognized probiotic properties. Recently, consumer interest in fermented products with probiotic microorganisms has increased due to the accumulating evidence of the effects of kefir microorganisms on the modulation of gut microbiota and their antimicrobial activity. Although the health properties of kefir have been reviewed in other works, the present review addresses the antimicrobial effects of kefir microbiota and associated compounds. The antimicrobial activity of kefir microorganisms could derive from different mechanisms. The microorganisms' capacity to adhere to the intestinal epithelium, preventing the adhesion of pathogens, and their immunomodulation properties are among the mechanisms suggested. Bacteria and yeast isolated from kefir have been shown to have in vivo and in vitro antimicrobial activity against enteropathogenic bacteria and spoilage fungi. However, most reports have focused their approach on single-strain antimicrobial properties; evaluation of antimicrobial activity of cocultures of kefir microbiota and their potential mechanisms of action has been neglected. Kefir microbiota and associated compounds have shown promising antimicrobial effects; however, more research needs to be done to discern the mechanisms of action.


Assuntos
Anti-Infecciosos , Produtos Fermentados do Leite , Kefir , Microbiota , Probióticos , Animais , Anti-Infecciosos/farmacologia , Produtos Fermentados do Leite/microbiologia , Kefir/microbiologia
4.
J Dairy Sci ; 105(1): 22-31, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34656351

RESUMO

The dairy industry struggles to maintain consumer attention in the midst of declining fluid milk sales. Current trends create an opportunity to incorporate plant-based proteins with milk to produce a high-protein, multisourced, functional food product. Plant-based proteins, such as those in peas, can be challenging to use in food systems because of their low solubility and undesirable off-flavors. Casein micelles have unique structural properties that allow for interactions with small ions and larger macromolecules that aid in their noteworthy ability as a nanovehicle for hydrophobic compounds. The objective of this study was to use the inherent structure of the casein micelle along with common dairy processing equipment to create a stable colloidal dispersion of casein micelles with pea protein to improve its solubility in aqueous solutions. We created 3 blends with varying ratios of casein-to-pea protein (90:10, 80:20, 50:50). We subjected the mixtures to 3 cycles of homogenization using a bench-top GEA 2-stage homogenizer at 27,580 kPa maintained at 4°C, followed by pasteurization at 63°C for 30 min. The resulting blends were homogeneous liquids with increased stability due to the lack of protein precipitation. Further protein analysis by HPLC and AA sequencing revealed that vicilin, an insoluble storage protein, was the main pea protein incorporated within the casein micelle structure. These results supported our hypothesis that low-temperature homogenization can successfully be used to create a colloidal dispersion with increased stability, in which insoluble plant-based proteins may be incorporated with casein micelles in an aqueous solution. Additionally, 3-dimensional microscope images of the blends indicated a noticeable difference between the surface roughness upon addition of pea protein to the casein micelle matrix. This research highlights a promising application for other plant-based proteins to be used within the dairy industry to help drive future product innovation while also meeting current processing conditions and consumer demands.


Assuntos
Caseínas , Proteínas de Ervilha , Animais , Micelas , Leite , Solubilidade , Temperatura
5.
J Dairy Sci ; 104(2): 1262-1275, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33358165

RESUMO

In recent years, acid whey production has increased due to a growing demand for Greek yogurt and acid-coagulated cheeses. Acid whey is a dairy by-product for which the industry has long struggled to find a sustainable application. Bulk amounts of acid whey associated with the dairy industry have led to increasing research on ways to valorize it. Industry players are finding ways to use acid whey on-site with ultrafiltration techniques and biodigesters, to reduce transportation costs and provide energy for the facility. Academia has sought to further investigate practical uses and benefits of this by-product. Although modern research has shown many other possible applications for acid whey, no comprehensive review yet exists about its composition, utilization, and health benefits. In this review, the industrial trends, the applications and uses, and the potential health benefits associated with the consumption of acid whey are discussed. The proximal composition of acid whey is discussed in depth. In addition, the potential applications of acid whey, such as its use as a starting material in the production of fermented beverages, as growth medium for cultivation of lactic acid bacteria in replacement of commercial media, and as a substrate for the isolation of lactose and minerals, are reviewed. Finally, the potential health benefits of the major protein constituents of acid whey, bioactive phospholipids, and organic acids such as lactic acid are described. Acid whey has promising applications related to potential health benefits, ranging from antibacterial effects to cognitive development for babies to human gut health.


Assuntos
Indústria de Laticínios/métodos , Promoção da Saúde , Soro do Leite/química , Animais , Queijo , Meios de Cultura/análise , Laticínios , Fermentação , Manipulação de Alimentos/métodos , Concentração de Íons de Hidrogênio , Ácido Láctico/análise , Lactobacillales/metabolismo , Lactose/análise , Proteínas do Soro do Leite/análise , Iogurte
6.
World J Microbiol Biotechnol ; 37(4): 65, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33740141

RESUMO

Lactic acid bacteria are the predominant group within meat products, whose metabolites such as bacteriocins and peptidoglycan hydrolases inhibit pathogenic or spoilage bacteria. Fermented meat products, as a salami, is a good source to analyze the viable microbiota, due to these products present a low risk to consumer health. The aim of this work was to identify the lactic acid bacteria with broad antibacterial activity present in salami, purify the protein responsible for this activity, achieve antagonistic spectrum and perform the biochemical characterization. Five strains from salami were selected, isolated and identified by 16S rRNA gene sequencing. The antimicrobial activity was evaluated by antagonism assay and zymography, using spoilage microorganisms commonly found in meat products. The strain that showed a broad antibacterial activity was Latilactobacillus sakei and the antibacterial activity was given by a protein with 75-kDa of molecular mass, identified by LC/MALDI-TOF/TOF. The sequence analysis showed 67% of identity with a N-acetylmuramoyl-L-alanine amidase protein with five non-identical LysM domains. The purified protein showed an optimal pH of 8.0 and heat resistance at 80 °C for 10 min. L. sakei strain displayed antibacterial activity against Gram-negative and Gram-positive spoilage microorganisms. The results of this study provide the information to use Latilactobacillus sakei as a starter culture which will provide the necessary metabolites to combat undesirable microorganisms. Additionally, the conditions and properties for the best application and use of the antibacterial protein produced by this strain. This protein may have a potential use in the food industry as a new antibacterial agent.


Assuntos
Antibacterianos/biossíntese , Antibacterianos/farmacologia , Lactobacillus/isolamento & purificação , Lactobacillus/metabolismo , Produtos da Carne/microbiologia , N-Acetil-Muramil-L-Alanina Amidase/biossíntese , Bactérias/efeitos dos fármacos , Bacteriocinas/farmacologia , Fermentação , Alimentos Fermentados/microbiologia , Microbiologia de Alimentos , Lactobacillus/genética , Testes de Sensibilidade Microbiana , Peso Molecular , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/isolamento & purificação , RNA Ribossômico 16S
7.
World J Microbiol Biotechnol ; 37(11): 196, 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34654973

RESUMO

The gene encoding N-acetylmuramoyl-L-alanine amidase in Latilactobacillus sakei isolated from a fermented meat product was cloned in two forms: its complete sequence (AmiC) and a truncated sequence without one of its anchoring LysM domains (AmiLysM4). The objective of this work was to evaluate the effect of LysM domain deletion on antibacterial activity as well the biochemical characterization of each recombinant protein. AmiC and AmiLysM4 were expressed in Escherichia coli BL21. Using a zymography method, two bands with lytic activity were observed, which were confirmed by LC-MS/MS analysis, with molecular masses of 71 kDa (AmiC) and 66 kDa (AmiLysM4). The recombinant proteins were active against Listeria innocua and Staphylococcus aureus strains. The inhibitory spectrum of AmiLysM4 was broader than AmiC as it showed inhibition of Leuconostoc mesenteroides and Weissella viridescens, both microorganisms associated with food decomposition. Optimal temperature and pH values were determined for both proteins using L-alanine-p-nitroanilide hydrochloride as a substrate for N-acetylmuramoyl-L-alanine amidase activity. Both proteins showed similar maximum activity values for pH (8) and temperature (50 °C). Furthermore, structural predictions did not show differences for the catalytic region, but differences were found for the region called 2dom-AmiLysM4, which includes 4 of the 5 LysM domains. Therefore, modification of the LysM domain offers new tools for the development of novel food biopreservatives.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Lactobacillaceae/enzimologia , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/farmacologia , Antibacterianos/química , Domínio Catalítico , Clonagem Molecular , Concentração de Íons de Hidrogênio , Lactobacillaceae/genética , Testes de Sensibilidade Microbiana , Modelos Moleculares , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Temperatura
8.
Appl Microbiol Biotechnol ; 104(4): 1401-1422, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31900557

RESUMO

Lactic acid bacteria (LAB) are a unique subset of microorganisms that have co-evolved with humans since the beginning of agricultural practices and animal domestication and throughout our never-ending quest for food preservation, digestibility, and flavor enhancement. LAB have historically played a preponderant role in our foods. In this review, we focus on the enzymatic activities and current or potential applications of LAB in our lives. A description of each of the enzymatic systems in LAB is included. Glycosidases, which hydrolyze the most abundant food molecules and as sources of carbon, sustain the lives of organisms on Earth as well as ensure microbial innocuity by the production of lactic acid from the uniquely mammalian carbohydrate, lactose. Lipases and proteases or proteinases are of fundamental importance in food fermentations and in dairy foods for flavor development. Bacteriocins and peptidoglycan hydrolases are part of the enzymatic system of LAB that has evolved to make these bacteria fierce competitors in various microbiomes, which are highly important for the human gut. In this review, we also present an explanation on how the versatility of the genetics of LAB can adapt to the matrix where they are placed with the advantage of not having any toxicity to humans. The systematic study of LAB enzymes has allowed for some unique applications in foods and biopharmaceutical industries. Here, we summarize how different enzyme systems in LAB are classified, and thus, facilitate much-needed further studies to understand the fundamentals and translate them into applications to improve our lives.


Assuntos
Microbiologia Industrial/tendências , Lactobacillales/enzimologia , Bacteriocinas/metabolismo , Microbiologia de Alimentos , Lactobacillales/genética
9.
J Dairy Sci ; 103(5): 3912-3923, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32147264

RESUMO

Lipolysis occurs during ripening of dairy products as a result of esterase or lipase activity. Lactic acid bacteria (LAB) are considered to be weakly lipolytic bacteria compared with other species. In cheeses with extended ripening periods, lipolytic LAB may have several advantages. Pediococcus acidilactici is a LAB frequently found in fermented dairy products, but no previous reports exist on their production of esterases or lipases. Our interest in the relationship of LAB and enzymatic characterization is due to the multiple reports of the benefits of LAB in the gut microbiome, particularly at the intestinal membrane. Pediococci have been characterized as probiotic and especially active in membrane interactions. The aim of this project was to purify, characterize, and identify the phosphoesterase produced by P. acidilactici originally isolated from Gouda cheese and determine its phospholipid (PL) hydrolysis profile, with a focus on increased absorption of these compounds in the human gut. Native zymograms were performed to identify a protein with lipolytic activity in the intracellular fraction of P. acidilactici. The enzyme was purified via size-exclusion HPLC, concentrated via ultrafiltration, and identified using sequence analysis in liquid chromatography (LC)-MS/MS. The purified fraction was subjected to biochemical characterization as a function of pH, temperature, ion concentration, hydrolysis of different substrates, and PL. A single protein with a molecular weight of 86 kDa and esterase activity was detected by zymography. Analysis of the LC-MS/MS results identified a putative metallophosphoesterase with a calculated molecular weight of 45.5 kDa, suggesting that this protein is active as a homodimer. The pure protein showed an optimal activity between pH 8.0 to 9.0. The optimal temperature for activity was 37°C, and the enzyme lost 15% of activity after incubation at 90°C for 1 h. This enzyme showed activity on short-chain fatty acids and exhibited high hydrolysis of phosphatidylinositol. It also hydrolyzed phosphatidylserine, phosphatidylcholine, and sphingomyelin. Phosphatidylethanolamine was hydrolyzed but with less efficiency. The characteristics and lipolytic actions exerted by this protein obtained from LAB hold promise for a potential strain of esterase or lipase that may exert human health benefits through increased digestibility and absorption of nutrients found in dairy products.


Assuntos
Queijo/microbiologia , Pediococcus acidilactici/enzimologia , Fosfoproteínas Fosfatases/isolamento & purificação , Animais , Cromatografia Líquida , Humanos , Hidrólise , Lipólise , Peso Molecular , Pediococcus acidilactici/isolamento & purificação , Fosfoproteínas Fosfatases/metabolismo , Espectrometria de Massas em Tandem
10.
J Dairy Sci ; 103(9): 7707-7718, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32684482

RESUMO

The mechanisms of bacterial adhesion to human cells involve several complex reactions and activation of genes and proteins. It has been reported that the food components in dairy matrices, such as sugar or salt, can decrease bacterial adhesion to Caco-2 cells. However, it has not been evaluated whether the bacteria grown in media supplemented with milk phospholipids (MPL) can increase or decrease the adhesion of these cells. The objective of this work was to evaluate the effects of MPL on the kinetic growth of lactic acid bacteria (LAB) and their functional characteristics as probiotics, expression of surface protein genes, and adherence to Caco-2 cells. Seven LAB strains isolated from various dairy products were characterized. Five of the tested LAB strains were able to grow in a chemically defined medium supplemented with MPL. Lactobacillus reuteri OSU-PECh-48 showed the highest growth rate and the greatest optical density. All of the strains tested showed tolerance to acidic conditions at pH 3.0 and to bile salts at 0.5 and 1% concentrations. Auto-aggregation and cell surface hydrophobicity ability were evaluated, with nonsignificant differences between the strains grown in MPL and without MPL. Gene expression of 6 surface proteins was evaluated in the presence or absence of MPL. Pediococcus acidilactici OSU-PECh-L and OSU-PECh-48 were the strains with highest relative expression of 5 of the 6 genes evaluated. Lactobacillus paracasei OSU-PECh-BA was the strain with the lowest level of expression of surface protein genes. Most of the bacteria tested had increased adhesion to Caco-2 cells after growth in MPL. The bacteria with the highest degrees of adhesion observed were Lactobacillus paracasei OSU-PECh-3B, Pediococcus acidilactici OSU-PECh-L, and Lactobacillus reuteri OSU-PECh-48. The genes Cnb and EF-Tu increased in expression in the presence of MPL in most of the LAB tested. The results obtained in this work demonstrate the high potential of these LAB strains for use as starters or beneficial cultures in fermentation of not only dairy products but also other food fermentation processes, with promising ability to increase residence time in the gut, modify the microbiome, and improve human health.


Assuntos
Aderência Bacteriana , Meios de Cultura/metabolismo , Lactobacillales/fisiologia , Leite/microbiologia , Fosfolipídeos/metabolismo , Probióticos/metabolismo , Animais , Células CACO-2 , Fermentação , Humanos , Lactobacillales/crescimento & desenvolvimento , Lacticaseibacillus paracasei/crescimento & desenvolvimento , Lacticaseibacillus paracasei/fisiologia , Microbiota
11.
Molecules ; 25(14)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660090

RESUMO

Hydroxycinnamic acid (HCA) decarboxylation by lactic acid bacteria (LAB) results in the production of 4-vinylplenols with great impact on the sensorial characteristics of foods. The determination of LAB decarboxylating capabilities is key for optimal strain selection for food production. The activity of LAB strains from the Ohio State University-Parker Endowed Chair (OSU-PECh) collection potentially capable of synthesizing phenolic acid decarboxylase was evaluated after incubation with HCAs for 36 h at 32 °C. A high-throughput method for monitoring HCAs decarboxylation was developed based on hypsochromic shifts at pH 1.0. Out of 22 strains evaluated, only Enterococcus mundtii, Lactobacillus plantarum and Pediococcus pentosaceus were capable of decarboxylating all p-coumaric, caffeic and ferulic acids. Other strains only decarboxylated p-coumaric and caffeic acid (6), only p-coumaric acid (2) or only caffeic acid (1), while 10 strains did not decarboxylate any HCA. p-Coumaric acid had the highest conversion efficiency, followed by caffeic acid and lastly ferulic acid. Results were confirmed by HPLC-DAD-ESI-MS analyses, showing the conversion of HCAs into their 4-vinylphenol derivatives. This work can help improve the sensory characteristics of HCA-rich foods where fermentation with LAB was used during processing.


Assuntos
Ácidos Cumáricos/metabolismo , Microbiologia de Alimentos , Lactobacillales/metabolismo , Descarboxilação , Espectrofotometria Ultravioleta
12.
Appl Microbiol Biotechnol ; 103(13): 5243-5257, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31030287

RESUMO

Regular consumption of fermented dairy products helps maintain a healthy microbiota and prevent gut dysbiosis-linked diseases. The lactic acid bacteria (LAB) present in food enhance the digestibility of proteins, moderate the release of fatty acids, and support human health through inhabiting the gastrointestinal tract. These desirable properties of LAB are attributed, in part, to their metabolic processes involving enzymes such as lipases, proteases, and antibacterial proteins. The LAB strains presenting higher enzymatic activities may offer improved functionality for applications in foods. The first aim of this work was to isolate and identify LAB from diverse dairy products and select those with enhanced enzymatic activities. Secondly, this work aimed to investigate the subcellular organization and identity of these enzymes after semi-purification. Out of the total 137 LAB strains isolated and screened, 50.3% and 61.3% of the strains exhibited lipolytic and proteolytic activities, respectively. Seven strains displaying high enzymatic activities were selected and further characterized for the cellular organization of their lipases, proteases, and antibacterial proteins. The lipolytic and proteolytic activities were exhibited predominantly in the extracellular fraction; whereas, the antibacterial activities were found in various cellular fractions and were capable of inhibiting common undesirable microorganisms in foods. In total, two lipases, seven proteases, and three antibacterial proteins were identified by LC-MS/MS. Characterization of LAB strains with high enzymatic activity has potential biotechnological significance in fermentative processes and in human health as they may improve the physicochemical characteristics of foods and displace strains with weaker enzymatic activities in the human gut microbiota.


Assuntos
Antibacterianos/farmacologia , Laticínios/microbiologia , Lactobacillales/enzimologia , Lactobacillales/isolamento & purificação , Lipólise , Proteólise , Antibacterianos/isolamento & purificação , Produtos Fermentados do Leite/microbiologia , Escherichia coli/efeitos dos fármacos , Fermentação , Microbiologia de Alimentos , Lipase/isolamento & purificação , Lipase/metabolismo , Peptídeo Hidrolases/isolamento & purificação , Peptídeo Hidrolases/metabolismo , Staphylococcus aureus/efeitos dos fármacos
13.
Phys Chem Chem Phys ; 20(32): 20821-20826, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30059112

RESUMO

A series of novel benzimidazolium-based non-racemic ionic liquids (ILs) was synthesized from low-cost chiral terpenoid alcohols and fully characterized by the use of a wide variety of techniques, such as DSC, ESI-MS, ATR FT-IR, polarimetry as well as 1H and 13C NMR spectroscopy. The ILs were investigated as chiral shift agents for the chiral recognition of racemic mixtures of Mosher's acid potassium salt by 19F NMR spectroscopy, leading to high splitting values of the CF3 signal. Supramolecular interactions between salt and H-C2 of chiral benzimidazolium cation are responsible for the chiral recognition, as was demonstrated by experimental evidences. Indeed, the enantiomeric excess value of enantioenriched substrates depends mainly on the strength of the contact ion pairs.

14.
Chemistry ; 23(6): 1444-1450, 2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-27873441

RESUMO

A specific secondary phosphine oxide (SPO) ligand (tert-butyl(phenyl)phosphine oxide) was employed to generate two iridium catalysts, an Ir-SPO complex and IrNPs (iridium nanoparticles) ligated with SPO ligands, which were compared mutually and with several supported iridium catalysts with the aim to establish the differences in their catalytic properties. The Ir-SPO-based catalysts showed totally different activities and selectivities in the hydrogenation of various substituted aldehydes, in which H2 is likely cleaved by a metal-ligand cooperation, that is, the SPO ligand and a neighboring metal centre operate in tandem to activate the hydrogen molecule. In addition, the supported IrNPs behave very differently from both Ir-SPO catalysts. This study exemplifies perfectly the advantages and disadvantages related to the use of the main types of catalysts, and thus the dissimilarities between them.

15.
Chemistry ; 23(52): 12779-12786, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28612457

RESUMO

Soluble platinum nanoparticles (Pt NPs) ligated by two different long-chain N-heterocyclic carbenes (LC-IPr and LC-IMe) were synthesized and fully characterized by TEM, high-resolution TEM, wide-angle X-ray scattering (WAXS), X-ray photoelectron spectroscopy (XPS), and solution NMR. The surface chemistry of these NPs (Pt@LC-IPr and Pt@LC-IMe) was investigated by FT-IR and solid state NMR using CO as a probe molecule. A clear influence of the bulkiness of the N-substituents on the size, surface state, and catalytic activity of these Pt NPs was observed. While Pt@LC-IMe showed no activity in the hydroboration of phenylacetylene, Pt@LC-IPr revealed good selectivity for the trans-isomer, which may be supported by a homogeneous species. This is the first example of hydroboration of acetylenes catalyzed by non-supported Pt NPs.

16.
Phys Chem Chem Phys ; 19(32): 21655-21662, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28766603

RESUMO

The synthesis of iridium nanoparticles (IrNPs) ligated by various secondary phosphine oxides (SPOs) is described. This highly reproducible and simple method via H2 reduction produces well dispersed, small nanoparticles (NPs), which were characterized by the state-of-the-art techniques, such as TEM, HRTEM, WAXS and ATR FT-IR spectroscopy. In particular, multinuclear solid state MAS-NMR spectroscopy with and without cross polarization (CP) enabled us to investigate the different binding modes adopted by the ligand at the nanoparticle surface, suggesting the presence of three possible types of coordination: as a purely anionic ligand Ir-P(O)R2, as a neutral acid R2P-O-H and as a monoanionic bidentate H-bonded dimer R2P-O-HO[double bond, length as m-dash]PR2. Specifically, the higher basicity of the dicyclohexyl system leads to the formation of IrNPs in which the bidentate binding mode is most abundant. Such cyclohexyl groups are bent towards the edges, as is suggested by the study of 13CO coordination on the NP surface. This study also showed that the number of surface sites on faces available for bridging CO molecules is higher than the number of sites for terminal CO species on edges and apices, which is unexpected taking into account the small size of the nanoparticles. In addition, the IrNPs present a high chemoselectivity in the hydrogenation of cinnamaldehyde to the unsaturated alcohol.

17.
J Am Chem Soc ; 137(24): 7718-27, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26034996

RESUMO

Air-stable and homogeneous gold nanoparticles (AuNPs, 1a-5a) ligated by various secondary phosphine oxides (SPOs), [R(1)R(2)P(O)H] (R(1) = Naph, R(2) = (t)Bu, L1; R(1) = R(2) = Ph, L2; R(1) = Ph, R(2) = Naph, L3; R(1) = R(2) = Et, L4; R(1) = R(2) = Cy, L5; R(1) = R(2) = (t)Bu, L6), with different electronic and steric properties were synthesized via NaBH4 reduction of the corresponding Au(I)-SPO complex. These easily accessible ligands allow the formation of well dispersed and small nanoparticles (size 1.2-2.2 nm), which were characterized by the use of a wide variety of techniques, such as transmission electron microscopy, thermogravimetric analysis, UV-vis, energy-dispersive X-ray, X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR FT-IR), and cross polarization magic angle spinning (CP MAS) NMR spectroscopy. A pronounced ligand effect was found, and CP MAS NMR experiments enabled us to probe important differences in the polarity of the P-O bond of the SPOs coordinated to the nanoparticle surface depending on the type of substituents in the ligand. AuNPs containing aryl SPOs carry only SPO anions and are highly selective for aldehyde hydrogenation. AuNPs of similar size made with alkyl SPOs contain also SPOH, hydrogen bonded to SPO anions. As a consequence they contain less Au(I) and more Au(0), as is also evidenced by XPS. They are less selective and active in aldehyde hydrogenation and now show the typical activity of Au(0)NPs in nitro group hydrogenation.

18.
Appl Microbiol Biotechnol ; 99(20): 8563-73, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25940238

RESUMO

Pediococcus acidilactici ATCC 8042 is a lactic acid bacteria that inhibits pathogenic microorganisms such as Staphylococcus aureus through the production of two proteins with lytic activity, one of 110 kDa and the other of 99 kDa. The 99-kDa one has high homology to a putative peptidoglycan hydrolase (PGH) enzyme reported in the genome of P. acidilactici 7_4, where two different lytic domains have been identified but not characterized. The aim of this work was the biochemical characterization of the recombinant enzyme of 99 kDa. The enzyme was cloned and expressed successfully and retains its activity against Micrococcus lysodeikticus. It has a higher N-acetylglucosaminidase activity, but the N-acetylmuramoyl-L-alanine amidase can also be detected spectrophotometrically. The protein was then purified using gel filtration chromatography. Antibacterial activity showed an optimal pH of 6.0 and was stable between 5.0 and 7.0. The optimal temperature for activity was 60 °C, and all activity was lost after 1 h of incubation at 70 °C. The number of strains susceptible to the recombinant 99-kDa enzyme was lower than that susceptible to the mixture of the 110- and 99-kDa PGHs of P. acidilactici, a result that suggests synergy between these two enzymes. This is the first PGH from LAB that has been shown to possess two lytic sites. The results of this study will aid in the design of new antibacterial agents from natural origin that can combat foodborne disease and improve hygienic practices in the industrial sector.


Assuntos
N-Acetil-Muramil-L-Alanina Amidase/isolamento & purificação , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Pediococcus/enzimologia , Sequência de Aminoácidos , Cromatografia em Gel , Clonagem Molecular , Estabilidade Enzimática , Expressão Gênica , Concentração de Íons de Hidrogênio , Viabilidade Microbiana/efeitos dos fármacos , Micrococcus/efeitos dos fármacos , Dados de Sequência Molecular , Peso Molecular , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Temperatura
19.
J Am Chem Soc ; 136(6): 2520-8, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24444462

RESUMO

The synthesis of air-stable and homogeneous gold nanoparticles (AuNPs) employing tert-butyl(naphthalen-1-yl)phosphine oxide as supporting ligand is described via NaBH4 reduction of a Au(I) precursor, [(tert-butyl(naphthalen-1-yl)phosphine oxide)AuCl]2. This highly reproducible and simple procedure furnishes small (1.24 ± 0.16 nm), highly soluble nanoparticles that are found to be highly active catalysts for the hydrogenation of substituted aldehydes, giving high conversions and chemoselectivities for a wide variety of substrates. In addition to catalytic studies the role of the novel stabilizer in the remarkable activity and selectivity exhibited by this system was interrogated thoroughly using a wide range of techniques, including ATR FT-IR, HRMAS NMR, XPS, and EDX spectroscopy. In particular, isotopic labeling experiments enabled us to probe the coordination mode adopted by the SPO ligand bound to the nanoparticle surface by ATR FT-IR spectroscopy. In combination with a series of control experiments we speculate that the SPO ligand demonstrates ligand-metal cooperative effects and plays a seminal role in the heterolytic hydrogenation mechanism.

20.
Chemistry ; 20(12): 3463-74, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24616053

RESUMO

Well-defined copper(I) complexes of composition [Tpm*(,Br) Cu(NCMe)]BF4 (Tpm*(,Br) =tris(3,5-dimethyl-4-bromo-pyrazolyl)methane) or [Tpa(*) Cu]PF6 (Tpa(*) =tris(3,5-dimethyl-pyrazolylmethyl)amine) catalyze the formation of 2,5-disubstituted oxazoles from carbonyl azides and terminal alkynes in a direct manner. This process represents a novel procedure for the synthesis of this valuable heterocycle from readily available starting materials, leading exclusively to the 2,5-isomer, attesting to a completely regioselective transformation. Experimental evidence and computational studies have allowed the proposal of a reaction mechanism based on the initial formation of a copper-acyl nitrene species, in contrast to the well-known mechanism for the copper-catalyzed alkyne and azide cycloaddition reactions (CuAAC) that is triggered by the formation of a copper-acetylide complex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA