Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563346

RESUMO

Under the need for new functional and biocompatible materials for biomedical applications, protein engineering allows the design of assemblable polypeptides, which, as convenient building blocks of supramolecular complexes, can be produced in recombinant cells by simple and scalable methodologies. However, the stability of such materials is often overlooked or disregarded, becoming a potential bottleneck in the development and viability of novel products. In this context, we propose a design strategy based on in silico tools to detect instability areas in protein materials and to facilitate the decision making in the rational mutagenesis aimed to increase their stability and solubility. As a case study, we demonstrate the potential of this methodology to improve the stability of a humanized scaffold protein (a domain of the human nidogen), with the ability to oligomerize into regular nanoparticles usable to deliver payload drugs to tumor cells. Several nidogen mutants suggested by the method showed important and measurable improvements in their structural stability while retaining the functionalities and production yields of the original protein. Then, we propose the procedure developed here as a cost-effective routine tool in the design and optimization of multimeric protein materials prior to any experimental testing.


Assuntos
Nanopartículas , Proteínas , Materiais Biocompatíveis , Tomada de Decisões , Humanos , Nanopartículas/química , Peptídeos , Engenharia de Proteínas/métodos , Proteínas/genética
2.
Small ; 14(26): e1800665, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29845742

RESUMO

Under the unmet need of efficient tumor-targeting drugs for oncology, a recombinant version of the plant toxin ricin (the modular protein T22-mRTA-H6) is engineered to self-assemble as protein-only, CXCR4-targeted nanoparticles. The soluble version of the construct self-organizes as regular 11 nm planar entities that are highly cytotoxic in cultured CXCR4+ cancer cells upon short time exposure, with a determined IC50 in the nanomolar order of magnitude. The chemical inhibition of CXCR4 binding sites in exposed cells results in a dramatic reduction of the cytotoxic potency, proving the receptor-dependent mechanism of cytotoxicity. The insoluble version of T22-mRTA-H6 is, contrarily, moderately active, indicating that free, nanostructured protein is the optimal drug form. In animal models of acute myeloid leukemia, T22-mRTA-H6 nanoparticles show an impressive and highly selective therapeutic effect, dramatically reducing the leukemia cells affectation of clinically relevant organs. Functionalized T22-mRTA-H6 nanoparticles are then promising prototypes of chemically homogeneous, highly potent antitumor nanostructured toxins for precise oncotherapies based on self-mediated intracellular drug delivery.


Assuntos
Antineoplásicos/farmacologia , Nanoestruturas/química , Neoplasias/patologia , Receptores CXCR4/metabolismo , Proteínas Recombinantes/farmacologia , Ricina/farmacologia , Sequência de Aminoácidos , Animais , Permeabilidade da Membrana Celular/efeitos dos fármacos , Modelos Animais de Doenças , Células HeLa , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Proteínas Recombinantes/química , Ricina/química
3.
Microb Cell Fact ; 14: 137, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26377321

RESUMO

Lactic acid bacteria (LAB) have a long history of safe exploitation by humans, being used for centuries in food production and preservation and as probiotic agents to promote human health. Interestingly, some species of these Gram-positive bacteria, which are generally recognized as safe organisms by the US Food and Drug Administration (FDA), are able to survive through the gastrointestinal tract (GIT), being capable to reach and colonize the intestine, where they play an important role. Besides, during the last decades, an important effort has been done for the development of tools to use LAB as microbial cell factories for the production of proteins of interest. Given the need to develop effective strategies for the delivery of prophylactic and therapeutic molecules, LAB have appeared as an appealing option for the oral, intranasal and vaginal delivery of such molecules. So far, these genetically modified organisms have been successfully used as vehicles for delivering functional proteins to mucosal tissues in the treatment of many different pathologies including GIT related pathologies, diabetes, cancer and viral infections, among others. Interestingly, the administration of such microorganisms would suppose a significant decrease in the production cost of the treatments agents since being live organisms, such vectors would be able to autonomously amplify and produce and deliver the protein of interest. In this context, this review aims to provide an overview of the use of LAB engineered as a promising alternative as well as a safety delivery platform of recombinant proteins for the treatment of a wide range of diseases.


Assuntos
Bactérias Gram-Positivas/fisiologia , Engenharia Metabólica , Probióticos , Doenças Autoimunes/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Vetores Genéticos , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Humanos , Ácido Láctico/metabolismo , Neoplasias/terapia , Organismos Geneticamente Modificados , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Microb Cell Fact ; 13: 167, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25471301

RESUMO

BACKGROUND: Escherichia coli has been a main host for the production of recombinant proteins of biomedical interest, but conformational stress responses impose severe bottlenecks that impair the production of soluble, proteolytically stable versions of many protein species. In this context, emerging Generally Recognized As Safe (GRAS) bacterial hosts provide alternatives as cell factories for recombinant protein production, in which limitations associated to the use of Gram-negative microorganisms might result minimized. Among them, Lactic Acid Bacteria and specially Lactococcus lactis are Gram-positive GRAS organisms in which recombinant protein solubility is generically higher and downstream facilitated, when compared to E. coli. However, deep analyses of recombinant protein quality in this system are still required to completely evaluate its performance and potential for improvement. RESULTS: We have explored here the conformational quality (through specific fluorescence emission) and solubility of an aggregation-prone GFP variant (VP1GFP) produced in L. lactis. In this context, our results show that parameters such as production time, culture conditions and growth temperature have a dramatic impact not only on protein yield, but also on protein solubility and conformational quality, that are particularly favored under fermentative metabolism. CONCLUSIONS: Metabolic regime and cultivation temperature greatly influence solubility and conformational quality of an aggregation-prone protein in L. lactis. Specifically, the present study proves that anaerobic growth is the optimal condition for recombinant protein production purposes. Besides, growth temperature plays an important role regulating both protein solubility and conformational quality. Additionally, our results also prove the great versatility for the manipulation of this bacterial system regarding the improvement of functionality, yield and quality of recombinant proteins in this species. These findings not only confirm L. lactis as an excellent producer of recombinant proteins but also reveal room for significant improvement by the exploitation of external protein quality modulators.


Assuntos
Proteínas de Fluorescência Verde , Lactococcus lactis , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Agregados Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Solubilidade
5.
Appl Microbiol Biotechnol ; 98(22): 9229-38, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25129611

RESUMO

Escherichia coli is the workhorse for gene cloning and production of soluble recombinant proteins in both biotechnological and biomedical industries. The bacterium is also a good producer of several classes of protein-based self-assembling materials such as inclusion bodies (IBs). Apart from being a relatively pure source of protein for in vitro refolding, IBs are under exploration as functional, protein-releasing materials in regenerative medicine and protein replacement therapies. Endotoxin removal is a critical step for downstream applications of therapeutic proteins. The same holds true for IBs as they are often highly contaminated with cell-wall components of the host cells. Here, we have investigated the production of IBs in a recently developed endotoxin-free E. coli strain. The characterization of IBs revealed this mutant as a very useful cell factory for the production of functional endotoxin-free IBs that are suitable for the use at biological interfaces without inducing endotoxic responses in human immune cells.


Assuntos
Produtos Biológicos/metabolismo , Endotoxinas/deficiência , Escherichia coli/metabolismo , Corpos de Inclusão/metabolismo , Tecnologia Farmacêutica/métodos , Biotecnologia/métodos , Proteínas Recombinantes/metabolismo
6.
Methods Mol Biol ; 2406: 401-416, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35089571

RESUMO

Purification of inclusion bodies (IBs) is gaining importance due to the raising of novel applications for these submicron particulate protein clusters, with potential uses in the biomedical and biotechnological fields among others. Here, we present five optimized methods to purify IBs adapting classical procedures to the material nature, as well as the requirements of the producer cell (Gram-negative bacteria, Gram-positive bacteria, or yeast) and the IB final application.


Assuntos
Corpos de Inclusão , Saccharomyces cerevisiae , Bactérias/metabolismo , Biotecnologia , Corpos de Inclusão/metabolismo , Pichia/metabolismo , Proteínas Recombinantes/metabolismo
7.
Biotechnol Adv ; 61: 108032, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36089254

RESUMO

Fundamental clinical areas such as drug delivery and regenerative medicine require biocompatible materials as mechanically stable scaffolds or as nanoscale drug carriers. Among the wide set of emerging biomaterials, polypeptides offer enticing properties over alternative polymers, including full biocompatibility, biodegradability, precise interactivity, structural stability and conformational and functional versatility, all of them tunable by conventional protein engineering. However, proteins from non-human sources elicit immunotoxicities that might bottleneck further development and narrow their clinical applicability. In this context, selecting human proteins or developing humanized protein versions as building blocks is a strict demand to design non-immunogenic protein materials. We review here the expanding catalogue of human or humanized proteins tailored to execute different levels of scaffolding functions and how they can be engineered as self-assembling materials in form of oligomers, polymers or complex networks. In particular, we emphasize those that are under clinical development, revising their fields of applicability and how they have been adapted to offer, apart from mere mechanical support, highly refined functions and precise molecular interactions.


Assuntos
Materiais Biocompatíveis , Proteínas , Humanos , Materiais Biocompatíveis/química , Medicina Regenerativa , Polímeros/química , Sistemas de Liberação de Medicamentos , Engenharia Tecidual
8.
Front Bioeng Biotechnol ; 10: 842256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573225

RESUMO

Bacterial inclusion bodies (IBs) are discrete macromolecular complexes that appear in recombinant prokaryotic cells under stress conditions. These structures are often discarded for biotechnological uses given the difficulty in recovering proteins of interest from them in a soluble form. However, recent approaches have revealed the potential of these protein clusters as biomaterials to promote cell growth and as protein depots for the release of recombinant proteins for biotechnological and biomedical applications. Although these kinds of natural supramolecular complexes have attracted great interest, no comprehensive study of their toxicity in cell cultures has been carried out. In this study, caco-2 cells were exposed to natural IBs, soluble protein-only nanoparticles (NPs), and non-assembled versions of the same protein for comparative purposes. Cytotoxicity, oxidative stress, and genotoxicity were analyzed for all these protein formats. Natural IBs and soluble protein formats demonstrated their safety in eukaryotic cells. No cytotoxicity, genotoxicity, or oxidative stress was detected in caco-2 cells exposed to the protein samples in any of the experimental conditions evaluated, which covered protein concentrations used in previous biological activity assays. These conditions evaluated the activity of protein samples obtained from three prokaryotic hosts [Escherichia coli and the endotoxin-free expression systems Lactococcus lactis and ClearColi® BL21 (DE3)]. Our results demonstrate that natural IBs and soluble protein nanoparticles are non-toxic materials for eukaryotic cells and that this may represent an interesting alternative to the classical unassembled format of recombinant proteins for certain applications in biotechnology and biomedicine.

9.
Microb Cell Fact ; 10: 79, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21992454

RESUMO

BACKGROUND: The effects and effectiveness of the chaperone pair GroELS on the yield and quality of recombinant polypeptides produced in Escherichia coli are matter of controversy, as the reported activities of this complex are not always consistent and eventually indicate undesired side effects. The divergence in the reported data could be due, at least partially, to different experimental conditions in independent research approaches. RESULTS: We have then selected two structurally different model proteins (namely GFP and E. coli ß-galactosidase) and two derived aggregation-prone fusions to explore, in a systematic way, the eventual effects of GroELS co-production on yield, solubility and conformational quality. Host cells were cultured at two alternative temperatures below the threshold at which thermal stress is expected to be triggered, to minimize the involvement of independent stress factors. CONCLUSIONS: From the analysis of protein yield, solubility and biological activity of the four model proteins produced alone or along the chaperones, we conclude that GroELS impacts on yield and quality of aggregation-prone proteins with intrinsic determinants but not on thermally induced protein aggregation. No effective modifications of protein solubility have been observed, but significant stabilization of small (encapsulable) substrates and moderate chaperone-induced degradation of larger (excluded) polypeptides. These findings indicate that the activities of this chaperone pair in the context of actively producing recombinant bacteria discriminate between intrinsic and thermally-induced protein aggregation, and that the side effects of GroELS overproduction might be determined by substrate size.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico/metabolismo , beta-Galactosidase/química , beta-Galactosidase/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Choque Térmico/genética , Temperatura Alta , Conformação Proteica , Dobramento de Proteína , beta-Galactosidase/genética
10.
Animals (Basel) ; 11(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34944191

RESUMO

The dry period is decisive for the milking performance of dairy cows. The promptness of mammary gland involution at dry-off affects not only the productivity in the next lactation, but also the risk of new intra-mammary infections since it is closely related with the activity of the immune system. Matrix metalloproteinase-9 (MMP-9) is an enzyme present in the mammary gland and has an active role during involution by disrupting the extracellular matrix, mediating cell survival and the recruitment of immune cells. The objective of this study was to determine the potential of exogenous administration of a soluble and recombinant version of a truncated MMP-9 (rtMMP-9) to accelerate mammary involution and boost the immune system at dry-off, avoiding the use of antibiotics. Twelve Holstein cows were dried abruptly, and two quarters of each cow received an intra-mammary infusion of either soluble rtMMP-9 or a positive control based on immunostimulant inclusion bodies (IBs). The contralateral quarters were infused with saline solution as negative control. Samples of mammary secretion were collected during the week following dry-off to determine SCC, metalloproteinase activity, bovine serum albumin, lactoferrin, sodium, and potassium concentrations. The soluble form of rtMMP-9 increased endogenous metalloproteinase activity in the mammary gland compared with saline quarters but did not accelerate either the immune response or involution in comparison with control quarters. The results demonstrated that the strategy to increase the mammary gland immunocompetence by recombinant infusion of rtMMP-9 was unsuccessful.

11.
Polymers (Basel) ; 13(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34685212

RESUMO

Fabricating polymeric scaffolds using cost-effective manufacturing processes is still challenging. Gas foaming techniques using supercritical carbon dioxide (scCO2) have attracted attention for producing synthetic polymer matrices; however, the high-pressure requirements are often a technological barrier for its widespread use. Compressed 1,1,1,2-tetrafluoroethane, known as Freon R134a, offers advantages over CO2 in manufacturing processes in terms of lower pressure and temperature conditions and the use of low-cost equipment. Here, we report for the first time the use of Freon R134a for generating porous polymer matrices, specifically polylactide (PLA). PLA scaffolds processed with Freon R134a exhibited larger pore sizes, and total porosity, and appropriate mechanical properties compared with those achieved by scCO2 processing. PLGA scaffolds processed with Freon R134a were highly porous and showed a relatively fragile structure. Human mesenchymal stem cells (MSCs) attached to PLA scaffolds processed with Freon R134a, and their metabolic activity increased during culturing. In addition, MSCs displayed spread morphology on the PLA scaffolds processed with Freon R134a, with a well-organized actin cytoskeleton and a dense matrix of fibronectin fibrils. Functionalization of Freon R134a-processed PLA scaffolds with protein nanoparticles, used as bioactive factors, enhanced the scaffolds' cytocompatibility. These findings indicate that gas foaming using compressed Freon R134a could represent a cost-effective and environmentally friendly fabrication technology to produce polymeric scaffolds for tissue engineering approaches.

12.
Acta Biomater ; 119: 312-322, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189955

RESUMO

The possibility to conjugate tumor-targeted cytotoxic nanoparticles and conventional antitumoral drugs in single pharmacological entities would open a wide spectrum of opportunities in nanomedical oncology. This principle has been explored here by using CXCR4-targeted self-assembling protein nanoparticles based on two potent microbial toxins, the exotoxin A from Pseudomonas aeruginosa and the diphtheria toxin from Corynebacterium diphtheriae, to which oligo-floxuridine and monomethyl auristatin E respectively have been chemically coupled. The resulting multifunctional hybrid nanoconjugates, with a hydrodynamic size of around 50 nm, are stable and internalize target cells with a biological impact. Although the chemical conjugation minimizes the cytotoxic activity of the protein partner in the complexes, the concept of drug combination proposed here is fully feasible and highly promising when considering multiple drug treatments aimed to higher effectiveness or when facing the therapy of cancers with acquired resistance to classical drugs.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/farmacologia , Humanos , Nanoconjugados , Neoplasias/tratamento farmacológico , Proteínas , Pseudomonas aeruginosa
13.
Cancers (Basel) ; 13(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208189

RESUMO

The accumulated molecular knowledge about human cancer enables the identification of multiple cell surface markers as highly specific therapeutic targets. A proper tumor targeting could significantly avoid drug exposure of healthy cells, minimizing side effects, but it is also expected to increase the therapeutic index. Specifically, colorectal cancer has a particularly poor prognosis in late stages, being drug targeting an appropriate strategy to substantially improve the therapeutic efficacy. In this study, we have explored the potential of the human albumin-derived peptide, EPI-X4, as a suitable ligand to target colorectal cancer via the cell surface protein CXCR4, a chemokine receptor overexpressed in cancer stem cells. To explore the potential use of this ligand, self-assembling protein nanoparticles have been generated displaying an engineered EPI-X4 version, which conferred a modest CXCR4 targeting and fast and high level of cell apoptosis in tumor CXCR4+ cells, in vitro and in vivo. In addition, when EPI-X4-based building blocks are combined with biologically inert polypeptides containing the CXCR4 ligand T22, the resulting biparatopic nanoparticles show a dramatically improved biodistribution in mouse models of CXCR4+ human cancer, faster cell internalization and enhanced target cell death when compared to the version based on a single ligand. The generation of biparatopic materials opens exciting possibilities in oncotherapies based on high precision drug delivery based on the receptor CXCR4.

14.
Acta Biomater ; 130: 211-222, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34116228

RESUMO

Green fluorescent protein (GFP) is a widely used scaffold for protein-based targeted nanomedicines because of its high biocompatibility, biological neutrality and outstanding structural stability. However, being immunogenicity a major concern in the development of drug carriers, the use of exogenous proteins such as GFP in clinics might be inadequate. Here we report a human nidogen-derived protein (HSNBT), rationally designed to mimic the structural and functional properties of GFP as a scaffold for nanomedicine. For that, a GFP-like ß-barrel, containing the G2 domain of the human nidogen, has been rationally engineered to obtain a biologically neutral protein that self-assembles as 10nm-nanoparticles. This scaffold is the basis of a humanized nanoconjugate, where GFP, from the well-characterized protein T22-GFP-H6, has been substituted by the nidogen-derived GFP-like HSNBT protein. The resulting construct T22-HSNBT-H6, is a humanized CXCR4-targeted nanoparticle that selectively delivers conjugated genotoxic Floxuridine into cancer CXCR4+ cells. Indeed, the administration of T22-HSNBT-H6-FdU in a CXCR4-overexpressing colorectal cancer mouse model results in an even more efficient selective antitumoral effect than that shown by its GFP-counterpart, in absence of systemic toxicity. Therefore, the newly developed GFP-like protein scaffold appears as an ideal candidate for the development of humanized protein nanomaterials and successfully supports the tumor-targeted nanoscale drug T22-HSNBT-H6-FdU. STATEMENT OF SIGNIFICANCE: Targeted nanomedicine seeks for humanized and biologically neutral protein carriers as alternative of widely used but immunogenic exogenous protein scaffolds such as green fluorescent protein (GFP). This work reports for the first time the rational engineering of a human homolog of the GFP based in the human nidogen (named HSNBT) that shows full potential to be used in humanized protein-based targeted nanomedicines. This has been demonstrated in T22-HSNBT-H6-FdU, a humanized CXCR4-targeted protein nanoconjugate able to selectively deliver its genotoxic load into cancer cells.


Assuntos
Portadores de Fármacos , Nanomedicina , Sistemas de Liberação de Medicamentos , Proteínas de Fluorescência Verde , Humanos , Nanoconjugados
15.
ACS Sustain Chem Eng ; 9(36): 12341-12354, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34603855

RESUMO

We have developed a simple, robust, and fully transversal approach for the a-la-carte fabrication of functional multimeric nanoparticles with potential biomedical applications, validated here by a set of diverse and unrelated polypeptides. The proposed concept is based on the controlled coordination between Zn2+ ions and His residues in His-tagged proteins. This approach results in a spontaneous and reproducible protein assembly as nanoscale oligomers that keep the original functionalities of the protein building blocks. The assembly of these materials is not linked to particular polypeptide features, and it is based on an environmentally friendly and sustainable approach. The resulting nanoparticles, with dimensions ranging between 10 and 15 nm, are regular in size, are architecturally stable, are fully functional, and serve as intermediates in a more complex assembly process, resulting in the formation of microscale protein materials. Since most of the recombinant proteins produced by biochemical and biotechnological industries and intended for biomedical research are His-tagged, the green biofabrication procedure proposed here can be straightforwardly applied to a huge spectrum of protein species for their conversion into their respective nanostructured formats.

16.
Microb Cell Fact ; 9: 71, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20849629

RESUMO

BACKGROUND: Bacterial inclusion bodies are submicron protein clusters usually found in recombinant bacteria that have been traditionally considered as undesirable products from protein production processes. However, being fully biocompatible, they have been recently characterized as nanoparticulate inert materials useful as scaffolds for tissue engineering, with potentially wider applicability in biomedicine and material sciences. Current protocols for inclusion body isolation from Escherichia coli usually offer between 95 to 99% of protein recovery, what in practical terms, might imply extensive bacterial cell contamination, not compatible with the use of inclusion bodies in biological interfaces. RESULTS: Using an appropriate combination of chemical and mechanical cell disruption methods we have established a convenient procedure for the recovery of bacterial inclusion bodies with undetectable levels of viable cell contamination, below 10⁻¹ cfu/ml, keeping the particulate organization of these aggregates regarding size and protein folding features. CONCLUSIONS: The application of the developed protocol allows obtaining bacterial free inclusion bodies suitable for use in mammalian cell cultures and other biological interfaces.


Assuntos
Corpos de Inclusão/química , Escherichia coli/metabolismo , Corpos de Inclusão/metabolismo , Muramidase/metabolismo , Pressão , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Sonicação , Tensoativos/química
17.
J Control Release ; 327: 61-69, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32768629

RESUMO

Growth factors are required for cell proliferation and differentiation under physiological conditions but especially in the context of regenerative medicine. The time-prolonged administration of those factors has been explored using different sustained drug delivery systems. These platforms include natural materials such as bacterial inclusion bodies (IBs) that contain chaperones and other bacterial components that might favour protein release. Being successful from a functional point of view, IBs pose regulatory concerns to clinical applications because of the mentioned presence of bacterial cell components, including endotoxins. We have here explored the release and activity of the human fibroblast growth factor-2 (hFGF-2) from a novel synthetic material, namely artificial IBs. Being chemically homogenous and compliant with regulatory restrictions, we wondered if these materials would effectively release functional proteins in absence of accompanying bacterial agents. The data provided here fully supports that artificial hFGF-2 IBs act as true and efficient secretory granules and they slowly disintegrate in cell culture to promote wound healing in an in vitro wound healing model. Free from undesired bacterial components, artificial inclusion bodies show promises as delivery agents in regenerative medicine.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Corpos de Inclusão , Endotoxinas , Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Humanos , Chaperonas Moleculares
18.
J Mater Chem B ; 8(23): 5080-5088, 2020 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-32400840

RESUMO

In tissue engineering, biological, physical, and chemical inputs have to be combined to properly mimic cellular environments and successfully build artificial tissues which can be designed to fulfill different biomedical needs such as the shortage of organ donors or the development of in vitro disease models for drug testing. Inclusion body-like protein nanoparticles (pNPs) can simultaneously provide such physical and biochemical stimuli to cells when attached to surfaces. However, this attachment has only been made by physisorption. To provide a stable anchoring, a covalent binding of lactic acid bacteria (LAB) produced pNPs, which lack the innate pyrogenic impurities of Gram-negative bacteria like Escherichia coli, is presented. The reported micropatterns feature a robust nanoscale topography with an unprecedented mechanical stability. In addition, they are denser and more capable of influencing cell morphology and orientation. The increased stability and the absence of pyrogenic impurities represent a step forward towards the translation of this material to a clinical setting.


Assuntos
Proteínas de Bactérias/química , Escherichia coli/química , Lactococcus lactis/química , Nanopartículas/química , Humanos , Estrutura Molecular , Imagem Óptica , Tamanho da Partícula , Propriedades de Superfície , Células Tumorais Cultivadas
19.
Adv Sci (Weinh) ; 7(3): 1902420, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32042562

RESUMO

Bacterial inclusion bodies (IBs) are mechanically stable protein particles in the microscale, which behave as robust, slow-protein-releasing amyloids. Upon exposure to cultured cells or upon subcutaneous or intratumor injection, these protein materials secrete functional IB polypeptides, functionally mimicking the endocrine release of peptide hormones from secretory amyloid granules. Being appealing as delivery systems for prolonged protein drug release, the development of IBs toward clinical applications is, however, severely constrained by their bacterial origin and by the undefined and protein-to-protein, batch-to-batch variable composition. In this context, the de novo fabrication of artificial IBs (ArtIBs) by simple, cell-free physicochemical methods, using pure components at defined amounts is proposed here. By this, the resulting functional protein microparticles are intriguing, chemically defined biomimetic materials that replicate relevant functionalities of natural IBs, including mammalian cell penetration and local or remote release of functional ArtIB-forming protein. In default of severe regulatory issues, the concept of ArtIBs is proposed as a novel exploitable category of biomaterials for biotechnological and biomedical applications, resulting from simple fabrication and envisaging soft developmental routes to clinics.

20.
N Biotechnol ; 57: 11-19, 2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32028049

RESUMO

Efficient protocols for the production of recombinant proteins are indispensable for the development of the biopharmaceutical sector. Accumulation of recombinant proteins in naturally-occurring protein aggregates is detrimental to biopharmaceutical development. In recent years, the view of protein aggregates has changed with the recognition that they are a valuable source of functional recombinant proteins. In this study, bovine interferon-gamma (rBoIFN-γ) was engineered to enhance the formation of protein aggregates, also known as protein nanoparticles (NPs), by the addition of aggregation-prone peptides (APPs) in the generally recognized as safe (GRAS) bacterial Lactococcus lactis expression system. The L6K2, HALRU and CYOB peptides were selected to assess their intrinsic aggregation capability to nucleate protein aggregation. These APPs enhanced the tendency of the resulting protein to aggregate at the expense of total protein yield. However, fine physico-chemical characterization of the resulting intracellular protein NPs, the protein released from them and the protein purified from the soluble cell fraction indicated that the compactability of protein conformations was directly related to the biological activity of variants of IFN-γ, used here as a model protein with therapeutic potential. APPs enhanced the aggregation tendency of fused rBoIFN-γ while increasing compactability of protein species. Biological activity of rBoIFN-γ was favored in more compacted conformations. Naturally-occurring protein aggregates can be produced in GRAS microorganisms as protein depots of releasable active protein. The addition of APPs to enhance the aggregation tendency has a positive impact in overall compactability and functionality of resulting protein conformers.


Assuntos
Interferon gama/química , Nanopartículas/química , Peptídeos/química , Animais , Bovinos , Lactococcus lactis/química , Agregados Proteicos , Engenharia de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA