Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Am J Hum Genet ; 110(7): 1046-1067, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352859

RESUMO

The American College of Medical Genetics and Genomics (ACMG)/Association for Molecular Pathology (AMP) framework for classifying variants uses six evidence categories related to the splicing potential of variants: PVS1, PS3, PP3, BS3, BP4, and BP7. However, the lack of guidance on how to apply such codes has contributed to variation in the specifications developed by different Clinical Genome Resource (ClinGen) Variant Curation Expert Panels. The ClinGen Sequence Variant Interpretation Splicing Subgroup was established to refine recommendations for applying ACMG/AMP codes relating to splicing data and computational predictions. We utilized empirically derived splicing evidence to (1) determine the evidence weighting of splicing-related data and appropriate criteria code selection for general use, (2) outline a process for integrating splicing-related considerations when developing a gene-specific PVS1 decision tree, and (3) exemplify methodology to calibrate splice prediction tools. We propose repurposing the PVS1_Strength code to capture splicing assay data that provide experimental evidence for variants resulting in RNA transcript(s) with loss of function. Conversely, BP7 may be used to capture RNA results demonstrating no splicing impact for intronic and synonymous variants. We propose that the PS3/BS3 codes are applied only for well-established assays that measure functional impact not directly captured by RNA-splicing assays. We recommend the application of PS1 based on similarity of predicted RNA-splicing effects for a variant under assessment in comparison with a known pathogenic variant. The recommendations and approaches for consideration and evaluation of RNA-assay evidence described aim to help standardize variant pathogenicity classification processes when interpreting splicing-based evidence.


Assuntos
Variação Genética , Genoma Humano , Humanos , Estados Unidos , Genômica/métodos , Alelos , Splicing de RNA/genética , Testes Genéticos/métodos
2.
Bioinformatics ; 39(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37021934

RESUMO

SUMMARY: SpliceAI is a widely used splicing prediction tool and its most common application relies on the maximum delta score to assign variant impact on splicing. We developed the SpliceAI-10k calculator (SAI-10k-calc) to extend use of this tool to predict: the splicing aberration type including pseudoexonization, intron retention, partial exon deletion, and (multi)exon skipping using a 10 kb analysis window; the size of inserted or deleted sequence; the effect on reading frame; and the altered amino acid sequence. SAI-10k-calc has 95% sensitivity and 96% specificity for predicting variants that impact splicing, computed from a control dataset of 1212 single-nucleotide variants (SNVs) with curated splicing assay results. Notably, it has high performance (≥84% accuracy) for predicting pseudoexon and partial intron retention. The automated amino acid sequence prediction allows for efficient identification of variants that are expected to result in mRNA nonsense-mediated decay or translation of truncated proteins. AVAILABILITY AND IMPLEMENTATION: SAI-10k-calc is implemented in R (https://github.com/adavi4/SAI-10k-calc) and also available as a Microsoft Excel spreadsheet. Users can adjust the default thresholds to suit their target performance values.


Assuntos
Splicing de RNA , Íntrons , Éxons , RNA Mensageiro/metabolismo , Sequência de Aminoácidos
3.
Genet Med ; 24(2): 398-409, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906448

RESUMO

PURPOSE: Branchpoint elements are required for intron removal, and variants at these elements can result in aberrant splicing. We aimed to assess the value of branchpoint annotations generated from recent large-scale studies to select branchpoint-abrogating variants, using hereditary cancer genes as model. METHODS: We identified branchpoint elements in 119 genes associated with hereditary cancer from 3 genome-wide experimentally-inferred and 2 predicted branchpoint data sets. We then identified variants that occur within branchpoint elements from public databases. We compared conservation, unique variant observations, and population frequencies at different nucleotides within branchpoint motifs. Finally, selected minigene assays were performed to assess the splicing effect of variants at branchpoint elements within mismatch repair genes. RESULTS: There was poor overlap between predicted and experimentally-inferred branchpoints. Our analysis of cancer genes suggested that variants at -2 nucleotide, -1 nucleotide, and branchpoint positions in experimentally-inferred canonical motifs are more likely to be clinically relevant. Minigene assay data showed the -2 nucleotide to be more important to branchpoint motif integrity but also showed fluidity in branchpoint usage. CONCLUSION: Data from cancer gene analysis suggest that there are few high-risk alleles that severely impact function via branchpoint abrogation. Results of this study inform a general scheme to prioritize branchpoint motif variants for further study.


Assuntos
Neoplasias , Splicing de RNA , Genes Neoplásicos , Humanos , Íntrons/genética , Neoplasias/genética , Splicing de RNA/genética
5.
HGG Adv ; 4(2): 100185, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36908940

RESUMO

Alternative splicing contributes to cancer development. Indeed, splicing analysis of cancer genome-wide association study (GWAS) risk variants has revealed likely causal variants. To systematically assess GWAS variants for splicing effects, we developed a prioritization workflow using a combination of splicing prediction tools, alternative transcript isoforms, and splicing quantitative trait locus (sQTL) annotations. Application of this workflow to candidate causal variants from 16 endometrial cancer GWAS risk loci highlighted single-nucleotide polymorphisms (SNPs) that were predicted to upregulate alternative transcripts. For two variants, sQTL data supported the predicted impact on splicing. At the 17q11.2 locus, the protective allele for rs7502834 was associated with increased splicing of an exon in a NF1 alternative transcript encoding a truncated protein in adipose tissue and is consistent with an endometrial cancer transcriptome-wide association study (TWAS) finding in adipose tissue. Notably, NF1 haploinsufficiency is protective for obesity, a well-established risk factor for endometrial cancer. At the 17q21.32 locus, the rs2278868 risk allele was predicted to upregulate a SKAP1 transcript that is subject to nonsense-mediated decay, concordant with a corresponding sQTL in lymphocytes. This is consistent with a TWAS finding that indicates decreased SKAP1 expression in blood increases endometrial cancer risk. As SKAP1 is involved in T cell immune responses, decreased SKAP1 expression may impact endometrial tumor immunosurveillance. In summary, our analysis has identified potentially causal endometrial cancer GWAS risk variants with plausible biological mechanisms and provides a splicing annotation workflow to aid interpretation of other GWAS datasets.


Assuntos
Neoplasias do Endométrio , Estudo de Associação Genômica Ampla , Feminino , Humanos , Predisposição Genética para Doença/genética , Locos de Características Quantitativas/genética , Processamento Alternativo , Neoplasias do Endométrio/genética , Fosfoproteínas/genética
6.
medRxiv ; 2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36865205

RESUMO

The American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) framework for classifying variants uses six evidence categories related to the splicing potential of variants: PVS1 (null variant in a gene where loss-of-function is the mechanism of disease), PS3 (functional assays show damaging effect on splicing), PP3 (computational evidence supports a splicing effect), BS3 (functional assays show no damaging effect on splicing), BP4 (computational evidence suggests no splicing impact), and BP7 (silent change with no predicted impact on splicing). However, the lack of guidance on how to apply such codes has contributed to variation in the specifications developed by different Clinical Genome Resource (ClinGen) Variant Curation Expert Panels. The ClinGen Sequence Variant Interpretation (SVI) Splicing Subgroup was established to refine recommendations for applying ACMG/AMP codes relating to splicing data and computational predictions. Our study utilised empirically derived splicing evidence to: 1) determine the evidence weighting of splicing-related data and appropriate criteria code selection for general use, 2) outline a process for integrating splicing-related considerations when developing a gene-specific PVS1 decision tree, and 3) exemplify methodology to calibrate bioinformatic splice prediction tools. We propose repurposing of the PVS1_Strength code to capture splicing assay data that provide experimental evidence for variants resulting in RNA transcript(s) with loss of function. Conversely BP7 may be used to capture RNA results demonstrating no impact on splicing for both intronic and synonymous variants, and for missense variants if protein functional impact has been excluded. Furthermore, we propose that the PS3 and BS3 codes are applied only for well-established assays that measure functional impact that is not directly captured by RNA splicing assays. We recommend the application of PS1 based on similarity of predicted RNA splicing effects for a variant under assessment in comparison to a known Pathogenic variant. The recommendations and approaches for consideration and evaluation of RNA assay evidence described aim to help standardise variant pathogenicity classification processes and result in greater consistency when interpreting splicing-based evidence.

7.
Genome Med ; 15(1): 74, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37723522

RESUMO

BACKGROUND: Many families and individuals do not meet criteria for a known hereditary cancer syndrome but display unusual clusters of cancers. These families may carry pathogenic variants in cancer predisposition genes and be at higher risk for developing cancer. METHODS: This multi-centre prospective study recruited 195 cancer-affected participants suspected to have a hereditary cancer syndrome for whom previous clinical targeted genetic testing was either not informative or not available. To identify pathogenic disease-causing variants explaining participant presentation, germline whole-genome sequencing (WGS) and a comprehensive cancer virtual gene panel analysis were undertaken. RESULTS: Pathogenic variants consistent with the presenting cancer(s) were identified in 5.1% (10/195) of participants and pathogenic variants considered secondary findings with potential risk management implications were identified in another 9.7% (19/195) of participants. Health economic analysis estimated the marginal cost per case with an actionable variant was significantly lower for upfront WGS with virtual panel ($8744AUD) compared to standard testing followed by WGS ($24,894AUD). Financial analysis suggests that national adoption of diagnostic WGS testing would require a ninefold increase in government annual expenditure compared to conventional testing. CONCLUSIONS: These findings make a case for replacing conventional testing with WGS to deliver clinically important benefits for cancer patients and families. The uptake of such an approach will depend on the perspectives of different payers on affordability.


Assuntos
Síndromes Neoplásicas Hereditárias , Humanos , Estudos Prospectivos , Oncogenes , Testes Genéticos , Células Germinativas
8.
JIMD Rep ; 48(1): 60-66, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31392114

RESUMO

Classic galactosemia is an autosomal recessive disorder caused by deleterious variants in the galactose-1-phosphate uridylyltransferase (GALT) gene. GALT enzyme deficiency leads to an increase in the levels of galactose and its metabolites in the blood causing neurodevelopmental and other clinical complications in affected individuals. Two GALT variants NM_000155.3:c.347T>C (p.Leu116Pro) and NM_000155.3:c.533T>G (p.Met178Arg) were previously detected in Filipino patients. Here, we determine their functional effects on the GALT enzyme through in silico analysis and a novel experimental approach using a HeLa-based cell-free protein expression system. Enzyme activity was not detected for the p.Leu116Pro protein variant, while only 4.5% of wild-type activity was detected for the p.Met178Arg protein variant. Computational analysis of the variants revealed destabilizing structural effects and suggested protein misfolding as the potential mechanism of enzymological impairment. Biochemical and computational data support the classification of p.Leu116Pro and p.Met178Arg variants as pathogenic. Moreover, the protein expression method developed has utility for future studies of GALT variants.

9.
Orphanet J Rare Dis ; 12(1): 7, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28077157

RESUMO

BACKGROUND: Mucopolysaccharidosis type II, an X-linked recessive disorder is the most common lysosomal storage disease detected among Filipinos. This is a case series involving 23 male Filipino patients confirmed to have Hunter syndrome. The clinical and biochemical characteristics were obtained and mutation testing of the IDS gene was done on the probands and their female relatives. RESULTS: The mean age of the patients was 11.28 (SD 4.10) years with an average symptom onset at 1.2 (SD 1.4) years. The mean age at biochemical diagnosis was 8 (SD 3.2) years. The early clinical characteristics were developmental delay, joint stiffness, coarse facies, recurrent respiratory tract infections, abdominal distention and hernia. Majority of the patients had joint contractures, severe intellectual disability, error of refraction, hearing loss and valvular regurgitation on subspecialists' evaluation. The mean GAG concentration was 506.5 mg (SD 191.3)/grams creatinine while the mean plasma iduronate-2-sulfatase activity was 0.86 (SD 0.79) nmol/mg plasma/4 h. Fourteen (14) mutations were found: 6 missense (42.9%), 4 nonsense (28.6%), 2 frameshift (14.3%), 1 exon skipping at the cDNA level (7.1%), and 1 gross insertion (7.1%). Six (6) novel mutations were observed (43%): p.C422F, p.P86Rfs*44, p.Q121*, p.L209Wfs*4, p.T409R, and c.1461_1462insN[710]. CONCLUSION: The age at diagnosis in this series was much delayed and majority of the patients presented with severe neurologic impairment. The results of the biochemical tests did not contribute to the phenotypic classification of patients. The effects of the mutations were consistent with the severe phenotype seen in the majority of the patients.


Assuntos
Mucopolissacaridose II/sangue , Mucopolissacaridose II/metabolismo , Adolescente , Criança , Códon sem Sentido/genética , Éxons/genética , Feminino , Mutação da Fase de Leitura/genética , Glicosaminoglicanos/sangue , Glicosaminoglicanos/metabolismo , Humanos , Iduronato Sulfatase/genética , Iduronato Sulfatase/metabolismo , Doenças por Armazenamento dos Lisossomos/sangue , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/metabolismo , Masculino , Mucopolissacaridose II/genética , Mutação , Mutação de Sentido Incorreto/genética , Filipinas
10.
Kobe J Med Sci ; 59(3): E106-11, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-24045215

RESUMO

Classic galactosemia is an inherited metabolic disorder due to mutations in the galactose-1-phosphate uridyltransferase (GALT) gene. This study describes the results of the GALT gene analysis of four unrelated Filipino patients with Classic Galactosemia. DNA extracted from dried blood spots and peripheral blood of the patients, age one month to two and a half years, underwent PCR-amplification with subsequent bidirectional sequencing of all eleven exons with their flanking intronic regions following standard protocols. Clinical data of these patients were reviewed. The patients presented with jaundice, hepatomegaly, diarrhea, vomiting, poor feeding and seizures during their neonatal period. They were diagnosed with elevated blood galactose and galactose-1-phosphate and absent GALT activity. Four missense mutations were found wherein two were previously reported (p.V168L and p.A345D) and two were novel (p.L116P and p.M178R). The most frequent mutation in our cohort is p.V168L. This study suggests that GALT mutations are ethnic-specific and that galactosemia is a heterogeneous disorder at the molecular level. The importance of early detection, immediate and proper medical management and genetic counseling of the patients and their families cannot be overemphasized.


Assuntos
Povo Asiático/genética , Mutação , UTP-Hexose-1-Fosfato Uridililtransferase/genética , Feminino , Humanos , Recém-Nascido , Masculino , Filipinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA