Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 17(6): 305-311, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929503

RESUMO

A novel FDA approved in vivo dosimetry device system using plastic scintillating detectors placed in an endorectal balloon to provide real-time in vivo dosimetry for prostatic rectal interface was tested for use with stereotactic body radiotherapy (SBRT). The system was used for the first time ever to measure dose during linear accelerator based SBRT. A single patient was treated with a total dose of 36.25 Gy given in 5 fractions. Delivered dose was measured for each treatment with the detectors placed against the anterior rectal wall near the prostate rectal interface. Measured doses showed varying degrees of agreement with computed/ planned doses, with average combined dose found to be within 6% of the expected dose. The variance between measurements is most likely due to uncertainty of the detector location, as well as variation in the placement of a new balloon prior to each fraction. Distance to agreement for the detectors was generally found to be within a few millimeters, which also suggested that the differences in measured and calculated doses were due to positional uncertainty of the detectors during the SBRT, which had sharp dose falloff near the penumbra along the rectal wall. Overall, the use of a real time in vivo dosimeter provided a level of safety and improved confidence in treatment delivery. We are evaluating the device further in an IRB-approved prospective partial prostate SBRT trial, and believe further clinical investigations are warranted.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Dosimetria in Vivo/métodos , Neoplasias da Próstata/cirurgia , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Reto/efeitos da radiação , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Dosagem Radioterapêutica
2.
Phys Med Biol ; 58(19): 6887-96, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24025704

RESUMO

Age-related macular degeneration is a leading cause of vision loss for the elderly population of industrialized nations. The IRay® Radiotherapy System, developed by Oraya® Therapeutics, Inc., is a stereotactic low-voltage irradiation system designed to treat the wet form of the disease. The IRay System uses three robotically positioned 100 kVp collimated photon beams to deliver an absorbed dose of up to 24 Gy to the macula. The present study uses the Monte Carlo radiation transport code MCNPX to assess absorbed dose to six non-targeted tissues within the eye-total lens, radiosensitive tissues of the lens, optic nerve, distal tip of the central retinal artery, non-targeted portion of the retina, and the ciliary body--all as a function of eye size and beam entry angle. The ocular axial length was ranged from 20 to 28 mm in 2 mm increments, with the polar entry angle of the delivery system varied from 18° to 34° in 2° increments. The resulting data showed insignificant variations in dose for all eye sizes. Slight variations in the dose to the optic nerve and the distal tip of the central retinal artery were noted as the polar beam angle changed. An increase in non-targeted retinal dose was noted as the entry angle increased, while the dose to the lens, sensitive volume of the lens, and ciliary body decreased as the treatment polar angle increased. Polar angles of 26° or greater resulted in no portion of the sensitive volume of the lens receiving an absorbed dose of 0.5 Gy or greater. All doses to non-targeted structures reported in this study were less than accepted thresholds for post-procedure complications.


Assuntos
Olho/patologia , Olho/efeitos da radiação , Degeneração Macular/cirurgia , Órgãos em Risco/efeitos da radiação , Doses de Radiação , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Humanos , Degeneração Macular/patologia , Método de Monte Carlo , Tamanho do Órgão , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA