Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 109(37): 14948-53, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22927410

RESUMO

Recent findings suggest that neurons can efficiently repair oxidatively damaged DNA, and that both DNA damage and repair are enhanced by activation of excitatory glutamate receptors. However, in pathological conditions such as ischemic stroke, excessive DNA damage can trigger the death of neurons. Oxidative DNA damage is mainly repaired by base excision repair (BER), a process initiated by DNA glycosylases that recognize and remove damaged DNA bases. Endonuclease VIII-like 1 (NEIL1) is a DNA glycosylase that recognizes a broad range of oxidative lesions. Here, we show that mice lacking NEIL1 exhibit impaired memory retention in a water maze test, but no abnormalities in tests of motor performance, anxiety, or fear conditioning. NEIL1 deficiency results in increased brain damage and a defective functional outcome in a focal ischemia/reperfusion model of stroke. The incision capacity on a 5-hydroxyuracil-containing bubble substrate was lower in the ipsilateral side of ischemic brains and in the mitochondrial lysates of unstressed old NEIL1-deficient mice. These results indicate that NEIL1 plays an important role in learning and memory and in protection of neurons against ischemic injury.


Assuntos
Isquemia Encefálica/metabolismo , Dano ao DNA/fisiologia , DNA Glicosilases/fisiologia , Reparo do DNA/fisiologia , Memória de Curto Prazo/fisiologia , Orientação/fisiologia , Análise de Variância , Animais , Isquemia Encefálica/patologia , DNA Glicosilases/deficiência , DNA Glicosilases/metabolismo , Reparo do DNA/genética , Marcação In Situ das Extremidades Cortadas , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Estatísticas não Paramétricas
2.
Nucleic Acids Res ; 40(17): 8392-405, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22743267

RESUMO

Cockayne syndrome (CS) is a rare human disorder characterized by pathologies of premature aging, neurological abnormalities, sensorineural hearing loss and cachectic dwarfism. With recent data identifying CS proteins as physical components of mitochondria, we sought to identify protein partners and roles for Cockayne syndrome group B (CSB) protein in this organelle. CSB was found to physically interact with and modulate the DNA-binding activity of the major mitochondrial nucleoid, DNA replication and transcription protein TFAM. Components of the mitochondrial transcription apparatus (mitochondrial RNA polymerase, transcription factor 2B and TFAM) all functionally interacted with CSB and stimulated its double-stranded DNA-dependent adenosine triphosphatase activity. Moreover, we found that patient-derived CSB-deficient cells exhibited a defect in efficient mitochondrial transcript production and that CSB specifically promoted elongation by the mitochondrial RNA polymerase in vitro. These observations provide strong evidence for the importance of CSB in maintaining mitochondrial function and argue that the pathologies associated with CS are in part, a direct result of the roles that CSB plays in mitochondria.


Assuntos
DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Elongação da Transcrição Genética , Fatores de Transcrição/metabolismo , Linhagem Celular Transformada , DNA/metabolismo , DNA Helicases/deficiência , DNA Helicases/fisiologia , Enzimas Reparadoras do DNA/deficiência , Enzimas Reparadoras do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Células HeLa , Humanos , Metiltransferases/metabolismo , Mitocôndrias/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose , Transcrição Gênica
3.
Redox Biol ; 57: 102474, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36183542

RESUMO

Diastolic dysfunction (DD) underlies heart failure with preserved ejection fraction (HFpEF), a clinical syndrome associated with aging that is becoming more prevalent. Despite extensive clinical studies, no effective treatment exists for HFpEF. Recent findings suggest that oxidative stress contributes to the pathophysiology of DD, but molecular mechanisms underpinning redox-sensitive cardiac remodeling in DD remain obscure. Using transgenic mice with mitochondria-targeted NOX4 overexpression (Nox4TG618) as a model, we demonstrate that NOX4-dependent mitochondrial oxidative stress induces DD in mice as measured by increased E/E', isovolumic relaxation time, Tau Glantz and reduced dP/dtmin while EF is preserved. In Nox4TG618 mice, fragmentation of cardiomyocyte mitochondria, increased DRP1 phosphorylation, decreased expression of MFN2, and a higher percentage of apoptotic cells in the myocardium are associated with lower ATP-driven and maximal mitochondrial oxygen consumption rates, a decrease in respiratory reserve, and a decrease in citrate synthase and Complex I activities. Transgenic mice have an increased concentration of TGFß and osteopontin in LV lysates, as well as MCP-1 in plasma, which correlates with a higher percentage of LV myocardial periostin- and ACTA2-positive cells compared with wild-type mice. Accordingly, the levels of ECM as measured by Picrosirius Red staining as well as interstitial deposition of collagen I are elevated in the myocardium of Nox4TG618 mice. The LV tissue of Nox4TG618 mice also exhibited increased ICaL current, calpain 2 expression, and altered/disrupted Z-disc structure. As it pertains to human pathology, similar changes were found in samples of LV from patients with DD. Finally, treatment with GKT137831, a specific NOX1 and NOX4 inhibitor, or overexpression of mCAT attenuated myocardial fibrosis and prevented DD in the Nox4TG618 mice. Together, our results indicate that mitochondrial oxidative stress contributes to DD by causing mitochondrial dysfunction, impaired mitochondrial dynamics, increased synthesis of pro-inflammatory and pro-fibrotic cytokines, activation of fibroblasts, and the accumulation of extracellular matrix, which leads to interstitial fibrosis and passive stiffness of the myocardium. Further, mitochondrial oxidative stress increases cardiomyocyte Ca2+ influx, which worsens CM relaxation and raises the LV filling pressure in conjunction with structural proteolytic damage.

4.
JCI Insight ; 7(10)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35603785

RESUMO

Loss-of-function (LOF) variants in SCN1B, encoding the voltage-gated sodium channel ß1/ß1B subunits, are linked to neurological and cardiovascular diseases. Scn1b-null mice have spontaneous seizures and ventricular arrhythmias and die by approximately 21 days after birth. ß1/ß1B Subunits play critical roles in regulating the excitability of ventricular cardiomyocytes and maintaining ventricular rhythmicity. However, whether they also regulate atrial excitability is unknown. We used neonatal Scn1b-null mice to model the effects of SCN1B LOF on atrial physiology in pediatric patients. Scn1b deletion resulted in altered expression of genes associated with atrial dysfunction. Scn1b-null hearts had a significant accumulation of atrial collagen, increased susceptibility to pacing induced atrial fibrillation (AF), sinoatrial node (SAN) dysfunction, and increased numbers of cholinergic neurons in ganglia that innervate the SAN. Atropine reduced the incidence of AF in null animals. Action potential duration was prolonged in null atrial myocytes, with increased late sodium current density and reduced L-type calcium current density. Scn1b LOF results in altered atrial structure and AF, demonstrating the critical role played by Scn1b in atrial physiology during early postnatal mouse development. Our results suggest that SCN1B LOF variants may significantly impact the developing pediatric heart.


Assuntos
Fibrilação Atrial , Potenciais de Ação , Animais , Fibrilação Atrial/genética , Humanos , Camundongos , Camundongos Knockout , Nó Sinoatrial/metabolismo , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/genética , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/metabolismo
5.
FASEB J ; 23(1): 34-44, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18772346

RESUMO

Transcription of the rearranged immunoglobulin gene and expression of the enzyme activation-induced deaminase (AID) are essential for somatic hypermutations of this gene during antibody maturation. While AID acts as a single-strand DNA-cytosine deaminase creating U . G mispairs that lead to mutations, the role played by transcription in this process is less clear. We have used in vitro transcription of the kan gene by the T7 RNA polymerase (RNAP) in the presence of AID and a genetic reversion assay for kanamycin-resistance to investigate the causes of multiple clustered mutations (MCMs) during somatic hypermutations. We find that, depending on transcription conditions, AID can cause single-base substitutions or MCMs. When wild-type RNAP is used for transcription at physiologically relevant concentrations of ribonucleoside triphosphates (NTPs), few MCMs are found. In contrast, slowing the rate of elongation by reducing the NTP concentration or using a mutant RNAP increases several-fold the percent of revertants containing MCMs. Arresting the elongation complexes by a quick removal of NTPs leads to formation of RNA-DNA hybrids (R-loops). Treatment of these structures with AID results in a high percentage of Kan(R) revertants with MCMs. Furthermore, selecting for transcription elongation complexes stalled near the codon that suffers mutations during acquisition of kanamycin-resistance results in an overwhelming majority of revertants with MCMs. These results show that if RNAP II pauses or stalls during transcription of immunoglobulin gene, AID is likely to promote MCMs. As changes in physiological conditions such as occurrence of certain DNA primary or secondary structures or DNA adducts are known to cause transcriptional pausing and stalling in mammalian cells, this process may cause MCMs during somatic hypermutation.


Assuntos
Citidina Desaminase/metabolismo , RNA Polimerases Dirigidas por DNA/fisiologia , Mutação/genética , Transcrição Gênica/fisiologia , Citidina Desaminase/genética , DNA/química , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli , Regulação da Expressão Gênica/fisiologia , Humanos , Resistência a Canamicina/genética , Fatores R/genética
6.
DNA Repair (Amst) ; 7(8): 1289-97, 2008 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-18515192

RESUMO

Methylmethane sulfonate (MMS) produces DNA base lesions, including 3-methylcytosine (m3C), more effectively in single-stranded DNA. The repair of m3C in Escherichia coli is mediated by AlkB through oxidative demethylation and in the absence of repair, m3C leads to base-substitution mutations. We describe here results of experiments that were designed to investigate whether transcription of a gene in E. coli affects the process of mutagenesis by MMS and the roles played by AlkB and lesion bypass polymerase PolV. Using a genetic reversion assay, we have confirmed that MMS mutagenesis is suppressed by AlkB, but is enhanced by PolV. High transcription of the target gene enhances reversion frequency in an orientation-dependent manner. When the cytosines that are the likely targets of MMS were in the non-template strand (NTS), transcription increased the MMS-induced reversion frequency several fold. This increase was dependent on the presence of PolV. In contrast, when the same cytosines were present in the template strand, transcription had little effect on reversion frequency induced by MMS. These data suggest that MMS creates 3-methylcytosine adducts in the NTS and are consistent with an idea proposed previously that transcription makes the NTS transiently single-stranded and more accessible to chemicals. We propose that this is the underlying cause of its increased sensitivity to MMS and suggest that transcriptionally active DNA may be a preferred target for the action of alkylating agents that prefer single-stranded DNA.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Metanossulfonato de Metila/toxicidade , Oxigenases de Função Mista/genética , Mutagênese , Mutagênicos/toxicidade , Transcrição Gênica , Escherichia coli/genética
7.
Redox Biol ; 21: 101063, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30576919

RESUMO

Increased reactive oxygen species (ROS) production and inflammation are key factors in the pathogenesis of atherosclerosis. We previously reported that NOX activator 1 (NOXA1) is the critical functional homolog of p67phox for NADPH oxidase activation in mouse vascular smooth muscle cells (VSMC). Here we investigated the effects of systemic and SMC-specific deletion of Noxa1 on VSMC phenotype during atherogenesis in mice. Neointimal hyperplasia following endovascular injury was lower in Noxa1-deficient mice versus the wild-type following endovascular injury. Noxa1 deletion in Apoe-/- or Ldlr-/- mice fed a Western diet showed 50% reduction in vascular ROS and 30% reduction in aortic atherosclerotic lesion area and aortic sinus lesion volume (P < 0.01). SMC-specific deletion of Noxa1 in Apoe-/- mice (Noxa1SMC-/-/Apoe-/-) similarly decreased vascular ROS levels and atherosclerotic lesion size. TNFα-induced ROS generation, proliferation and migration were significantly attenuated in Noxa1-deficient versus wild-type VSMC. Immunofluorescence analysis of atherosclerotic lesions showed a significant decrease in cells positive for CD68 and myosin11 (22% versus 9%) and Mac3 and α-actin (17% versus 5%) in the Noxa1SMC-/-/Apoe-/- versus Apoe-/- mice. The expression of transcription factor KLF4, a modulator of VSMC phenotype, and its downstream targets - VCAM1, CCL2, and MMP2 - were significantly reduced in the lesions of Noxa1SMC-/-/Apoe-/- versus Apoe-/- mice as well as in oxidized phospholipids treated Noxa1SMC-/- versus wild-type VSMC. Our data support an important role for NOXA1-dependent NADPH oxidase activity in VSMC plasticity during restenosis and atherosclerosis, augmenting VSMC proliferation and migration and KLF4-mediated transition to macrophage-like cells, plaque inflammation, and expansion.


Assuntos
Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , NADPH Oxidases/metabolismo , Oxirredução , Proteínas/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Animais , Apolipoproteínas E/deficiência , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Biomarcadores , Ativação Enzimática , Deleção de Genes , Loci Gênicos , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Especificidade de Órgãos/genética , Fenótipo , Proteínas/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores de LDL/deficiência , Fator de Necrose Tumoral alfa/metabolismo
8.
Redox Biol ; 26: 101288, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31419754

RESUMO

Aging is characterized by increased aortic stiffness, an early, independent predictor and cause of cardiovascular disease. Oxidative stress from excess reactive oxygen species (ROS) production increases with age. Mitochondria and NADPH oxidases (NOXs) are two major sources of ROS in cardiovascular system. We showed previously that increased mitochondrial ROS levels over a lifetime induce aortic stiffening in a mouse oxidative stress model. Also, NADPH oxidase 4 (NOX4) expression and ROS levels increase with age in aortas, aortic vascular smooth muscle cells (VSMCs) and mitochondria, and are correlated with age-associated aortic stiffness in hypercholesterolemic mice. The present study investigated whether young mice (4 months-old) with increased mitochondrial NOX4 levels recapitulate vascular aging and age-associated aortic stiffness. We generated transgenic mice with low (Nox4TG605; 2.1-fold higher) and high (Nox4TG618; 4.9-fold higher) mitochondrial NOX4 expression. Young Nox4TG618 mice showed significant increase in aortic stiffness and decrease in phenylephrine-induced aortic contraction, but not Nox4TG605 mice. Increased mitochondrial oxidative stress increased intrinsic VSMC stiffness, induced aortic extracellular matrix remodeling and fibrosis, a leftward shift in stress-strain curves, decreased volume compliance and focal adhesion turnover in Nox4TG618 mice. Nox4TG618 VSMCs phenocopied other features of vascular aging such as increased DNA damage, increased premature and replicative senescence and apoptosis, increased proinflammatory protein expression and decreased respiration. Aortic stiffening in young Nox4TG618 mice was significantly blunted with mitochondrial-targeted catalase overexpression. This demonstration of the role of mitochondrial oxidative stress in aortic stiffness will galvanize search for new mitochondrial-targeted therapeutics for treatment of age-associated vascular dysfunction.


Assuntos
Aorta/metabolismo , Genes Mitocondriais , NADPH Oxidase 4/genética , Rigidez Vascular/genética , Fatores Etários , Animais , Aorta/fisiopatologia , Senescência Celular/genética , Matriz Extracelular/metabolismo , Expressão Gênica , Estudos de Associação Genética , Peróxido de Hidrogênio/metabolismo , Imuno-Histoquímica , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , NADPH Oxidase 4/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo , Vasculite/genética , Vasculite/metabolismo , Vasculite/patologia
9.
Antioxid Redox Signal ; 31(1): 39-58, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30450923

RESUMO

Aims: Oxidative stress is implicated in cardiomyocyte cell death and cardiac remodeling in the failing heart. The role of NADPH oxidase 4 (NOX4) in cardiac adaptation to pressure overload is controversial, but its function in myocardial ischemic stress has not been thoroughly elucidated. This study examined the function of NOX4 in the pathogenesis of ischemic heart failure, utilizing mouse models, cell culture, and human heart samples. Results:Nox4-/- mice showed a protective phenotype in response to permanent left anterior descending coronary artery ligation with smaller infarction area, lower cardiomyocyte cross-sectional area, higher capillary density, and less cell death versus wild-type (WT) mice. Nox4-/- mice had lower activity of soluble epoxide hydrolase (sEH), a potent regulator of inflammation. Nox4-/- mice also showed a 50% reduction in the number of infiltrating CD68+ macrophages in the peri-infarct zone versus WT mice. Adenoviral overexpression of NOX4 in cardiomyoblast cells increased sEH expression and activity and CCL4 and CCL5 levels; inhibition of sEH activity in NOX4 overexpressing cells attenuated the cytokine levels. Human hearts with ischemic cardiomyopathy showed adverse cardiac remodeling, increased NOX4 and sEH protein expression and CCL4 and CCL5 levels compared with control nonfailing hearts. Innovation and Conclusion: These data from the Nox4-/- mouse model and human heart tissues show for the first time that oxidative stress from increased NOX4 expression has a functional role in ischemic heart failure. One mechanism by which NOX4 contributes to ischemic heart failure is by increasing inflammatory cytokine production via enhanced sEH activity.


Assuntos
Epóxido Hidrolases/metabolismo , Insuficiência Cardíaca/metabolismo , Isquemia Miocárdica/metabolismo , NADPH Oxidase 4/metabolismo , Animais , Linhagem Celular , Quimiocina CCL4/metabolismo , Quimiocina CCL5/metabolismo , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Insuficiência Cardíaca/genética , Humanos , Camundongos , Isquemia Miocárdica/genética , NADPH Oxidase 4/genética , Ratos , Regulação para Cima
10.
Neurobiol Aging ; 36(2): 1007-12, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25448603

RESUMO

Oxidative DNA damage accumulation has been implicated in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. The base excision repair pathway is a primary responder to oxidative DNA damage. Effects of loss of base excision repair on normal brain function is a relatively nascent area of research that needs further exploration for better understanding of related brain diseases. Recently, we found that loss of a versatile DNA glycosylase endonuclease 8-like 1 (NEIL1) causes deficits in spatial memory retention using the Morris water maze test. Furthermore, we found that there is a significant loss of NEIL1 enzyme levels and its activity in postmortem Alzheimer's disease brains. Based on the Allen Brain Atlas in situ hybridization data, the expression levels of Neil1 messenger RNA are higher in the olfactory bulb compared with other areas of the brain. Olfaction in mice is a central brain function that involves many central nervous system pathways. Here, we studied the effect of complete loss of Neil1 gene on olfactory function. We explored olfactory function in mice with 3 different behavioral tests namely, olfactory sensitivity, performance, and buried food tests. Neil1(-/-) mice performed poorly compared with wild-type mice in all 3 tests. Our data indicate that loss of Neil1 causes olfactory function deficits supporting our previous findings and that normal brain function requires robust DNA repair.


Assuntos
DNA Glicosilases/fisiologia , Transtornos do Olfato/genética , Olfato/genética , Animais , Dano ao DNA/genética , Reparo do DNA/genética , Camundongos Transgênicos , Estresse Oxidativo/genética
11.
Neurobiol Aging ; 36(7): 2319-2330, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25971543

RESUMO

Oxidative DNA damage is mainly repaired by base excision repair (BER). Previously, our laboratory showed that mice lacking the BER glycosylases 8-oxoguanine glycosylase 1 (Ogg1) or nei endonuclease VIII-like 1 (Neil1) recover more poorly from focal ischemic stroke than wild-type mice. Here, a mouse model was used to investigate whether loss of 1 of the 2 alleles of X-ray repair cross-complementing protein 1 (Xrcc1), which encodes a nonenzymatic scaffold protein required for BER, alters recovery from stroke. Ischemia and reperfusion caused higher brain damage and lower functional recovery in Xrcc1(+/-) mice than in wild-type mice. Additionally, a greater percentage of Xrcc1(+/-) mice died as a result of the stroke. Brain samples from human individuals who died of stroke and individuals who died of non-neurological causes were assayed for various steps of BER. Significant losses of thymine glycol incision, abasic endonuclease incision, and single nucleotide incorporation activities were identified, as well as lower expression of XRCC1 and NEIL1 proteins in stroke brains compared with controls. Together, these results suggest that impaired BER is a risk factor in ischemic brain injury and contributes to its recovery.


Assuntos
Reparo do DNA/genética , Proteínas de Ligação a DNA/deficiência , Hipóxia Encefálica/genética , Perda de Heterozigosidade/genética , Acidente Vascular Cerebral/genética , Animais , Dano ao DNA/genética , DNA Glicosilases , Modelos Animais de Doenças , Endonucleases , Expressão Gênica , Humanos , Masculino , Camundongos , Nucleotídeos , Fatores de Risco , Timina/análogos & derivados , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
12.
Neurobiol Aging ; 35(6): 1293-300, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24485507

RESUMO

Alzheimer's disease (AD) is a senile dementia with increased incidence in older subjects (age >65 years). One of the earliest markers of AD is oxidative DNA damage. Recently, it has been reported that preclinical AD patient brains show elevated levels of oxidative damage in both nuclear and mitochondrial nucleic acids. Moreover, different oxidative lesions in mitochondrial DNA are between 5- and 10-fold higher than in nuclear DNA in both control and AD postmortem brains. We previously showed that there is a significant loss of base excision repair (BER) components in whole tissue extracts of AD and mild cognitive impairment subjects relative to matched control subjects. However, comprehensive analysis of specific steps in BER levels in mitochondrial extracts of AD patient brains is not available. In this study, we mainly investigated various components of BER in mitochondrial extracts of AD and matched control postmortem brain samples. We found that the 5-hydroxyuracil incision and ligase activities are significantly lower in AD brains, whereas the uracil incision, abasic site cleavage, and deoxyribonucleotide triphosphate incorporation activities are normal in these samples.


Assuntos
Doença de Alzheimer/genética , Dano ao DNA/genética , Reparo do DNA/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Encéfalo/ultraestrutura , DNA Ligases/metabolismo , Didesoxinucleotídeos/metabolismo , Humanos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo/genética , Uracila/análogos & derivados , Uracila/metabolismo
13.
Aging (Albany NY) ; 5(3): 192-208, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23524341

RESUMO

The inherent complex and pleiotropic phenotype of mitochondrial diseases poses a significant diagnostic challenge for clinicians as well as an analytical barrier for scientists. To overcome these obstacles we compiled a novel database, www.mitodb.com, containing the clinical features of primary mitochondrial diseases. Based on this we developed a number of qualitative and quantitative measures, enabling us to determine whether a disorder can be characterized as mitochondrial. These included a clustering algorithm, a disease network, a mitochondrial barcode and two scoring algorithms. Using these tools we detected mitochondrial involvement in a number of diseases not previously recorded as mitochondrial. As a proof of principle Cockayne syndrome, ataxia with oculomotor apraxia 1 (AOA1), spinocerebellar ataxia with axonal neuropathy 1 (SCAN1) and ataxia-telangiectasia have recently been shown to have mitochondrial dysfunction and those diseases showed strong association with mitochondrial disorders. We next evaluated mitochondrial involvement in aging and detected two distinct categories of accelerated aging disorders, one of them being associated with mitochondrial dysfunction. Normal aging seemed to associate stronger with the mitochondrial diseases than the non-mitochondrial partially supporting a mitochondrial theory of aging.


Assuntos
Envelhecimento/patologia , Mitocôndrias/patologia , Doenças Mitocondriais/diagnóstico , Envelhecimento/genética , Humanos , Mitocôndrias/genética , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Mutação , Fenótipo
14.
DNA Repair (Amst) ; 12(8): 578-87, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23721970

RESUMO

Oxidative DNA damage is implicated in brain aging, neurodegeneration and neurological diseases. Damage can be created by normal cellular metabolism, which accumulates with age, or by acute cellular stress conditions which create bursts of oxidative damage. Brain cells have a particularly high basal level of metabolic activity and use distinct oxidative damage repair mechanisms to remove oxidative damage from DNA and dNTP pools. Accumulation of this damage in the background of a functional DNA repair response is associated with normal aging, but defective repair in brain cells can contribute to neurological dysfunction. Emerging research strongly associates three common neurodegenerative conditions, Alzheimer's, Parkinson's and stroke, with defects in the ability to repair chronic or acute oxidative damage in neurons. This review explores the current knowledge of the role of oxidative damage repair in preserving brain function and highlights the emerging models and methods being used to advance our knowledge of the pathology of neurodegenerative disease.


Assuntos
Envelhecimento/genética , Encéfalo/patologia , Reparo do DNA , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Animais , Encéfalo/metabolismo , Dano ao DNA , Modelos Animais de Doenças , Humanos , Neurônios/citologia , Neurônios/patologia , Estresse Oxidativo
15.
DNA Repair (Amst) ; 12(7): 518-28, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23683351

RESUMO

Telomeres are critical for cell survival and functional integrity. Oxidative DNA damage induces telomeric instability and cellular senescence that are associated with normal aging and segmental premature aging disorders such as Werner Syndrome and Rothmund-Thomson Syndrome, caused by mutations in WRN and RECQL4 helicases respectively. Characterizing the metabolic roles of RECQL4 and WRN in telomere maintenance is crucial in understanding the pathogenesis of their associated disorders. We have previously shown that WRN and RECQL4 display a preference in vitro to unwind telomeric DNA substrates containing the oxidative lesion 8-oxoguanine. Here, we show that RECQL4 helicase has a preferential activity in vitro on telomeric substrates containing thymine glycol, a critical lesion that blocks DNA metabolism, and can be modestly stimulated further on a D-loop structure by TRF2, a telomeric shelterin protein. Unlike that reported for telomeric D-loops containing 8-oxoguanine, RECQL4 does not cooperate with WRN to unwind telomeric D-loops with thymine glycol, suggesting RECQL4 helicase is selective for the type of oxidative lesion. RECQL4's function at the telomere is not yet understood, and our findings suggest a novel role for RECQL4 in the repair of thymine glycol lesions to promote efficient telomeric maintenance.


Assuntos
Dano ao DNA , RecQ Helicases/metabolismo , Síndrome de Rothmund-Thomson/genética , Telômero/metabolismo , DNA/química , DNA/metabolismo , Adutos de DNA/metabolismo , Reparo do DNA , Exodesoxirribonucleases/metabolismo , Humanos , Conformação de Ácido Nucleico , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Síndrome de Rothmund-Thomson/metabolismo , Telômero/química , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Timina/análogos & derivados , Timina/metabolismo , Helicase da Síndrome de Werner
16.
Aging Cell ; 11(3): 456-66, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22296597

RESUMO

RECQL4 is associated with Rothmund-Thomson Syndrome (RTS), a rare autosomal recessive disorder characterized by premature aging, genomic instability, and cancer predisposition. RECQL4 is a member of the RecQ helicase family, and has many similarities to WRN protein, which is also implicated in premature aging. There is no information about whether any of the RecQ helicases play roles in mitochondrial biogenesis, which is strongly implicated in the aging process. Here, we used microscopy to visualize RECQL4 in mitochondria. Fractionation of human and mouse cells also showed that RECQL4 was present in mitochondria. Q-PCR amplification of mitochondrial DNA demonstrated that mtDNA damage accumulated in RECQL4-deficient cells. Microarray analysis suggested that mitochondrial bioenergetic pathways might be affected in RTS. Measurements of mitochondrial bioenergetics showed a reduction in the mitochondrial reserve capacity after lentiviral knockdown of RECQL4 in two different primary cell lines. Additionally, biochemical assays with RECQL4, mitochondrial transcription factor A, and mitochondrial DNA polymerase γ showed that the polymerase inhibited RECQL4's helicase activity. RECQL4 is the first 3'-5' RecQ helicase to be found in both human and mouse mitochondria, and the loss of RECQL4 alters mitochondrial integrity.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo , Fatores Etários , Idoso de 80 Anos ou mais , Animais , Fracionamento Celular/métodos , Linhagem Celular Tumoral , Dano ao DNA , Instabilidade Genômica , Células HeLa , Humanos , Camundongos
17.
DNA Repair (Amst) ; 9(10): 1080-9, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20739229

RESUMO

Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids. TFAM plays an important role in mitochondrial transcription and replication. TFAM has been previously reported to inhibit nucleotide excision repair (NER) in vitro but NER has not yet been detected in mitochondria, whereas base excision repair (BER) has been comprehensively characterized in these organelles. The BER proteins are associated with the inner membrane in mitochondria and thus with the mitochondrial nucleoid, where TFAM is also situated. However, a function for TFAM in BER has not yet been investigated. This study examines the role of TFAM in BER. In vitro studies with purified recombinant TFAM indicate that it preferentially binds to DNA containing 8-oxoguanines, but not to abasic sites, uracils, or a gap in the sequence. TFAM inhibited the in vitro incision activity of 8-oxoguanine DNA glycosylase (OGG1), uracil-DNA glycosylase (UDG), apurinic endonuclease 1 (APE1), and nucleotide incorporation by DNA polymerase γ (pol γ). On the other hand, a DNA binding-defective TFAM mutant, L58A, showed less inhibition of BER in vitro. Characterization of TFAM knockdown (KD) cells revealed that these lysates had higher 8oxoG incision activity without changes in αOGG1 protein levels, TFAM KD cells had mild resistance to menadione and increased damage accumulation in the mtDNA when compared to the control cells. In addition, we found that the tumor suppressor p53, which has been shown to interact with and alter the DNA binding activity of TFAM, alleviates TFAM-induced inhibition of BER proteins. Together, the results suggest that TFAM modulates BER in mitochondria by virtue of its DNA binding activity and protein interactions.


Assuntos
Reparo do DNA , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dano ao DNA , DNA Glicosilases/metabolismo , DNA Polimerase gama , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , Células HeLa , Humanos , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA