Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(44): 30670-30678, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37933752

RESUMO

Previous research is predominantly in consensus on the reaction mechanism between formaldehyde (HCHO) and oxygen (O2) over catalysts. However, water vapor (H2O) always remains present during the reaction, and the intrinsic role of H2O in the oxidation of HCHO still needs to be fully understood. In this study, a single-atom catalyst, Al-doped C2N substrate, Al1/C2N, can be adopted as an example to investigate the relationship and interaction among O2, H2O, and HCHO. Density functional theory (DFT) calculations and microkinetic simulations were carried out to interpret the enhancement mechanism of H2O on HCHO oxidation over Al1/C2N. The outcome demonstrates that H2O directly breaks down a surface hydroxyl group on Al1/C2N, considerably lowering the energy required to form crucial intermediates, thus promoting oxidation. Without H2O, Al1/C2N cannot effectively oxidize HCHO at ambient temperature. During oxidation, H2O takes the major catalytic responsibility, delaying the entrance of O2 into the reaction, which is not only the product but also the crucial reactant to initiate catalysis, thereby sustaining the catalytic cycle. Moreover, this study predicts the catalytic behavior at various temperatures and presents feasible recommendations for regulating the reaction rates. The oxidation mechanism of HCHO is explained at the molecular level in this study, emphasizing the intrinsic role of water on Al1/C2N, which fills in the relevant studies for HCHO oxidation on two-dimensional carbon materials.

2.
Phys Chem Chem Phys ; 25(38): 26043-26048, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37727022

RESUMO

An ideal catalyst should have a relative hydrogen adsorption Gibbs free energy (ΔGH) close to zero [J. K. Nørskov, et al., J. Electrochem. Soc., 2005, 152, J23]. However, most of the known catalysts cannot reach this standard. Based on first-principles calculations, we studied the hydrogen evolution reaction (HER) catalytic performance of pristine and defect (including vacancy and heteroatom doping) structures in terms of its ΔGH. We found that the ΔGH values of Co-doped HfS2 and P-doped HfSe2 are extremely close to zero, even closer than that of Pt (111), indicating that they are excellent catalysts. Moreover, we found that the source of the HER catalytic performance of Co-doped HfS2 is the reduction of electron accumulation of the active site S atom. Our work provides two potential ideal catalysts and provides guidance for the experimental group to search for suitable catalysts.

3.
Environ Sci Technol ; 56(19): 13996-14007, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36083161

RESUMO

In this study, a wet scrubber coupled with a persulfate-based advanced oxidation process [carbocatalysts/peroxymonosulfate (PMS)] was demonstrated to efficiently remove gaseous volatile organic compounds (VOCs). The removal efficiency of a representative VOC, styrene, was stable at above 98%, and an average mineralization rate was achieved at 76% during 2 h. The removal efficiency of the carbocatalysts/PMS wet scrubber for styrene was much higher than that of pure water, carbocatalysts/water, or PMS/water systems. Quenching experiments, electron spin resonance spectroscopy, in-situ Raman spectroscopy and density functional theory (DFT) calculations indicated that singlet oxygen (1O2) and oxidative complexes are the main reactive oxygen species and that both contributed to styrene removal. In particular, carbonyl groups (C═O) in the carbocatalyst were found to be the active sites for activating PMS during styrene oxidation. The role of 1O2 was discovered to be benzene ring breaking and a possible non-radical oxidation pathway of styrene was proposed based on time-of-flight mass spectroscopy which was further verified by DFT calculations. In particular, the electron transfer process of multi world carbon nanotubes-PMS* in styrene oxidation was further studied in-depth by experiments and DFT calculations. The unstable vinyl on styrene was simultaneously degraded by the oxidative complexes and 1O2 into benzene, and finally oxidized by 1O2 into H2O and CO2. This study provides an effective method for VOC removal and clearly illustrates the complete degradation mechanism of styrene in a nonradical PMS-based process by a wet scrubber.


Assuntos
Nanotubos de Carbono , Compostos Orgânicos Voláteis , Benzeno , Dióxido de Carbono , Gases , Peróxidos/química , Espécies Reativas de Oxigênio , Oxigênio Singlete , Estirenos , Água
4.
Sci Total Environ ; 954: 176350, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39304142

RESUMO

Polylactic acid (PLA), as a biodegradable plastic, exhibits high sensitivity to ultraviolet (UV) radiation, yet the mechanisms and environmental risks of its photoaging remain unclear. This study uses quantum chemical calculations (DFT and TD-DFT) and kinetic simulations to explore the direct and indirect photoaging of PLA. Direct photoaging indicates that the highest oscillator intensity absorption peaks occurred at 172 and 246 nm, corresponding to the 13th singlet (S13) and 48th triplet (T48) states, thereby initiating the Norrish I and Norrish II mechanisms. The innovative "electron-hole" technology effectively clarifies the variations in photoaging mechanisms under different wavelengths. Indirect photoaging involves multiple reactive oxygen species (ROS) like •OH, 1O2, •O2-, and •HO2. The study confirms the anhydride production hypothesis and proposes two novel •OH-induced mechanisms: carbonyl carbon addition and branched methyl hydrogen dehydrogenation. Both mechanisms are thermodynamically advantageous, but their products pose potential environmental risks. ROS species and concentrations impact both PLA's photoaging mechanisms and environmental persistence. Low •OH concentration in northeast China, especially in winter, suggests a significant photoaging risk. This study offers pioneering insights into photoaging mechanisms and emphasizes the pivotal role of ROS, offering recommendations for managing PLA environmental impacts and fates in China.

5.
J Hazard Mater ; 469: 133982, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38460256

RESUMO

Enhancing Fe(VI) oxidation ability by generating high-valent iron-oxo species (Fe(IV)/Fe(V)) has attracted continuous interest. This work for the first time reports the efficient activation of Fe(VI) by a well-known aza-aromatic chelating agent 2,2'-bipyridyl (BPY) for micropollutant degradation. The presence of BPY increased the degradation constants of six model compounds (i.e., sulfamethoxazole (SMX), diclofenac (DCF), atenolol (ATL), flumequine (FLU), 4-chlorophenol (4-CP), carbamazepine (CBZ)) with Fe(VI) by 2 - 6 folds compared to those by Fe(VI) alone at pH 8.0. Lines of evidence indicated the dominant role of Fe(IV)/Fe(V) intermediates. Density functional theory calculations suggested that the binding of Fe(III) to one or two BPY molecules initiated the oxidation of Fe(III) to Fe(IV) by Fe(VI), while Fe(VI) was reduced to Fe(V). The increased exposures of Fe(IV)/Fe(V) were experimentally verified by the pre-generated Fe(III) complex with BPY and using methyl phenyl sulfoxide as the probe compound. The presence of chloride and bicarbonate slightly affected model compound degradation by Fe(VI) in the presence of BPY, while a negative effect of humic acid was obtained under the same conditions. This work demonstrates the potential of N-donor heterocyclic ligand to activate Fe(VI) for micropollutant degradation, which is instructive for the Fe(VI)-based oxidation processes.

6.
Water Res ; 254: 121440, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479170

RESUMO

The ultraviolet/monochloramine (UV/NH2Cl) process is an emerging advanced oxidation process with promising prospects in water treatment. Previous studies developed kinetic models of UV/NH2Cl for simulating radical concentrations and pollutant degradation. However, the reaction rate constants of Cl2•- with bicarbonate and carbonate (kCl2•-, HCO3- and kCl2•-, CO32-) were overestimated in literature. Consequently, when dosing 1 mM chloride and 1 mM bicarbonate, the current models of UV/NH2Cl severely under-predicted the experimental concentrations of three important radicals (i.e., hydroxyl radical (HO•), chlorine radical (Cl•), and dichloride radical (Cl2•-)) with great deviations (> 90 %). To investigate this issue, the transformation reactions among these three radicals in UV/NH2Cl were systematically studied. For the first time, it was found that in addition to Cl•, Cl2•- was also an important parent radical of HO• in the presence of chloride, and chloride could effectively compensate the inhibitory effect of bicarbonate on HO• generation in the system. Moreover, reactions and rate constants in current models were scrutinized from corresponding literature, and the reaction rate constants of Cl2•- with bicarbonate and carbonate (kCl2•-, HCO3- and kCl2•-, CO32-) were reevaluated to be 1.47 × 105 and 3.78 × 106 M-1s-1, respectively, by laser flash photolysis. With the newly obtained rate constants, the refined model could accurately simulate concentrations of all three radicals under different chloride and bicarbonate dosages with satisfactory deviations (< 30 %). Meanwhile, the refined model performed much better in predicting pollutant degradation and radical contribution compared with the unrefined model (with the previously estimated kCl2•-, HCO3- and kCl2•-, CO32-). The results of this study enhanced the accuracy and applicability of the kinetic model of UV/NH2Cl, and deepened the understanding of radical transformation in the process.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Bicarbonatos , Cloretos , Raios Ultravioleta , Poluentes Químicos da Água/análise , Cloro , Carbonatos , Cinética , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA