Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomed Environ Sci ; 37(1): 3-18, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38326717

RESUMO

Objective: This study aimed to investigate the potential relationship between urinary metals copper (Cu), arsenic (As), strontium (Sr), barium (Ba), iron (Fe), lead (Pb) and manganese (Mn) and grip strength. Methods: We used linear regression models, quantile g-computation and Bayesian kernel machine regression (BKMR) to assess the relationship between metals and grip strength. Results: In the multimetal linear regression, Cu (ß = -2.119), As (ß = -1.318), Sr (ß = -2.480), Ba (ß = 0.781), Fe (ß = 1.130) and Mn (ß = -0.404) were significantly correlated with grip strength ( P < 0.05). The results of the quantile g-computation showed that the risk of occurrence of grip strength reduction was -1.007 (95% confidence interval: -1.362, -0.652; P < 0.001) when each quartile of the mixture of the seven metals was increased. Bayesian kernel function regression model analysis showed that mixtures of the seven metals had a negative overall effect on grip strength, with Cu, As and Sr being negatively associated with grip strength levels. In the total population, potential interactions were observed between As and Mn and between Cu and Mn ( P interactions of 0.003 and 0.018, respectively). Conclusion: In summary, this study suggests that combined exposure to metal mixtures is negatively associated with grip strength. Cu, Sr and As were negatively correlated with grip strength levels, and there were potential interactions between As and Mn and between Cu and Mn.


Assuntos
Arsênio , Metais , Estudos Transversais , Teorema de Bayes , China/epidemiologia , Metais/toxicidade , Estrôncio
2.
J Hazard Mater ; 262: 83-90, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24008001

RESUMO

A novel organic-inorganic hydrophobic polydivinylbenzene-silica adsorbent (PDVB/R-SiO2) was successfully prepared by introducing a specific amount of divinylbenzene and solvent (i.e., tetrahydrofuran) to SiO2pores and initiating polymerization under solvothermal conditions. New smaller structures and surface areas were formed in the SiO2 pores. The PDVB/R-SiO2-0.5 samples exhibited a bimodal pore size distribution with both SiO2 micropores/mesopores (0.5-2.0 nm) and mesopores (2.0-5.0 nm). The surface areas increased from 116 m(2)/g (SiO2) to 246 m(2)/g. The breakthrough curves of toluene adsorption indicated that the amount adsorbed on PDVB/R-SiO2-0.5 was 12 times higher than that on SiO2. The highly humid environment exhibited no effect on adsorption because the surface of PDVB was functionalized. The adsorbed toluene was easily desorbed in hot N2 stream at 100 °C. After 10 adsorption-desorption cycles, PDVB/R-SiO2-0.5 continued exhibiting excellent adsorption, indicating superior structural and regeneration abilities.


Assuntos
Gases/química , Umidade , Dióxido de Silício/química , Compostos Orgânicos Voláteis/química , Adsorção , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA