Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 619(7971): 761-767, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37495878

RESUMO

China's goal to achieve carbon (C) neutrality by 2060 requires scaling up photovoltaic (PV) and wind power from 1 to 10-15 PWh year-1 (refs. 1-5). Following the historical rates of renewable installation1, a recent high-resolution energy-system model6 and forecasts based on China's 14th Five-year Energy Development (CFED)7, however, only indicate that the capacity will reach 5-9.5 PWh year-1 by 2060. Here we show that, by individually optimizing the deployment of 3,844 new utility-scale PV and wind power plants coordinated with ultra-high-voltage (UHV) transmission and energy storage and accounting for power-load flexibility and learning dynamics, the capacity of PV and wind power can be increased from 9 PWh year-1 (corresponding to the CFED path) to 15 PWh year-1, accompanied by a reduction in the average abatement cost from US$97 to US$6 per tonne of carbon dioxide (tCO2). To achieve this, annualized investment in PV and wind power should ramp up from US$77 billion in 2020 (current level) to US$127 billion in the 2020s and further to US$426 billion year-1 in the 2050s. The large-scale deployment of PV and wind power increases income for residents in the poorest regions as co-benefits. Our results highlight the importance of upgrading power systems by building energy storage, expanding transmission capacity and adjusting power load at the demand side to reduce the economic cost of deploying PV and wind power to achieve carbon neutrality in China.

2.
Nature ; 609(7926): 299-306, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36071193

RESUMO

The potential of mitigation actions to limit global warming within 2 °C (ref. 1) might rely on the abundant supply of biomass for large-scale bioenergy with carbon capture and storage (BECCS) that is assumed to scale up markedly in the future2-5. However, the detrimental effects of climate change on crop yields may reduce the capacity of BECCS and threaten food security6-8, thus creating an unrecognized positive feedback loop on global warming. We quantified the strength of this feedback by implementing the responses of crop yields to increases in growing-season temperature, atmospheric CO2 concentration and intensity of nitrogen (N) fertilization in a compact Earth system model9. Exceeding a threshold of climate change would cause transformative changes in social-ecological systems by jeopardizing climate stability and threatening food security. If global mitigation alongside large-scale BECCS is delayed to 2060 when global warming exceeds about 2.5 °C, then the yields of agricultural residues for BECCS would be too low to meet the Paris goal of 2 °C by 2200. This risk of failure is amplified by the sustained demand for food, leading to an expansion of cropland or intensification of N fertilization to compensate for climate-induced yield losses. Our findings thereby reinforce the urgency of early mitigation, preferably by 2040, to avoid irreversible climate change and serious food crises unless other negative-emission technologies become available in the near future to compensate for the reduced capacity of BECCS.


Assuntos
Agricultura , Produtos Agrícolas , Segurança Alimentar , Aquecimento Global , Agricultura/métodos , Agricultura/tendências , Atmosfera/química , Dióxido de Carbono/análise , Sequestro de Carbono , Produtos Agrícolas/crescimento & desenvolvimento , Ecossistema , Retroalimentação , Segurança Alimentar/métodos , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , Objetivos , Humanos , Nitrogênio/análise , Estações do Ano , Temperatura , Fatores de Tempo
3.
Glob Chang Biol ; 30(1): e16989, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37888833

RESUMO

Anthropogenic nitrogen (N) loading alters soil ammonia-oxidizing archaea (AOA) and bacteria (AOB) abundances, likely leading to substantial changes in soil nitrification. However, the factors and mechanisms determining the responses of soil AOA:AOB and nitrification to N loading are still unclear, making it difficult to predict future changes in soil nitrification. Herein, we synthesize 68 field studies around the world to evaluate the impacts of N loading on soil ammonia oxidizers and nitrification. Across a wide range of biotic and abiotic factors, climate is the most important driver of the responses of AOA:AOB to N loading. Climate does not directly affect the N-stimulation of nitrification, but does so via climate-related shifts in AOA:AOB. Specifically, climate modulates the responses of AOA:AOB to N loading by affecting soil pH, N-availability and moisture. AOB play a dominant role in affecting nitrification in dry climates, while the impacts from AOA can exceed AOB in humid climates. Together, these results suggest that climate-related shifts in soil ammonia-oxidizing community maintain the N-stimulation of nitrification, highlighting the importance of microbial community composition in mediating the responses of the soil N cycle to N loading.


Assuntos
Amônia , Solo , Solo/química , Nitrificação , Nitrogênio/análise , Oxirredução , Microbiologia do Solo , Archaea , Filogenia
4.
Environ Sci Technol ; 58(9): 4281-4290, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38391182

RESUMO

Particulate brown carbon (BrC) plays a crucial role in the global radiative balance due to its ability to absorb light. However, the effect of molecular formation on the light absorption properties of BrC remains poorly understood. In this study, atmospheric BrC samples collected from six Chinese megacities in winter and summer were characterized through ultrahigh-performance liquid chromatography coupled with Orbitrap mass spectrometry (UHPLC-Orbitrap MS) and light absorption measurements. The average values of BrC light absorption coefficient at a wavelength of 365 nm (babs365) in winter were approximately 4.0 times higher than those in summer. Nitrogen-containing organic molecules (CHNO) were identified as critical components of light-absorbing substances in both seasons, underscoring the importance of N-addition in BrC. These nitrogen-containing BrC chromophores were more closely related to nitro-containing compounds originating from biomass burning and nitrogen oxides (NOx)/nitrate (NO3-) reactions in winter. In summer, they were related to reduced N-containing compounds formed in ammonia (NH3)/ammonium (NH4+) reactions. The NH3/NH4+-mediated reactions contributed more to secondary BrC in summer than winter, particularly in southern cities. Compared with winter, the higher O/Cw, lower molecule conjugation indicator (double bond equivalent, DBE), and reduced BrC babs365 in summer suggest a possible bleaching mechanism during the oxidation process. These findings strengthen the connection between molecular composition and the light-absorbing properties of BrC, providing insights into the formation mechanisms of BrC chromophores across northern and southern Chinese cities in different seasons.


Assuntos
Poluentes Atmosféricos , Carbono , Cidades , Nitrogênio/análise , Aerossóis/análise , Carvão Mineral/análise , Nitrocompostos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise
5.
Environ Sci Technol ; 58(25): 11118-11127, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38864774

RESUMO

Intermediate volatility organic compounds (IVOCs) are important precursors to secondary organic aerosols (SOAs), but they are often neglected in studies concerning SOA formation. This study addresses the significant issue of IVOCs emissions in the Qinghai-Tibetan plateau (QTP), where solid fuels are extensively used under incomplete combustion conditions for residential heating and cooking. Our field measurement data revealed an emission factor of the total IVOCs (EFIVOCs) ranging from 1.56 ± 0.03 to 9.97 ± 3.22 g/kg from various combustion scenarios in QTP. The markedly higher EFIVOCs in QTP than in plain regions can be attributed to oxygen-deficient conditions. IVOCs were dominated by gaseous phase emissions, and the primary contributors of gaseous and particulate phase IVOCs are the unresolved complex mixture and alkanes, respectively. Total IVOCs emissions during the heating and nonheating seasons in QTP were estimated to be 31.7 ± 13.8 and 6.87 ± 0.45 Gg, respectively. The estimated SOA production resulting from combined emissions of IVOCs and VOCs is nearly five times higher than that derived from VOCs alone. Results from this study emphasized the pivotal role of IVOCs emissions in air pollution and provided a foundation for compiling emission inventories related to solid fuel combustion and developing pollution prevention strategies.


Assuntos
Aerossóis , Poluentes Atmosféricos , Carvão Mineral , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , China , Animais , Tibet , Monitoramento Ambiental
6.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34380740

RESUMO

The real-time monitoring of reductions of economic activity by containment measures and its effect on the transmission of the coronavirus (COVID-19) is a critical unanswered question. We inferred 5,642 weekly activity anomalies from the meteorology-adjusted differences in spaceborne tropospheric NO2 column concentrations after the 2020 COVID-19 outbreak relative to the baseline from 2016 to 2019. Two satellite observations reveal reincreasing economic activity associated with lifting control measures that comes together with accelerating COVID-19 cases before the winter of 2020/2021. Application of the near-real-time satellite NO2 observations produces a much better prediction of the deceleration of COVID-19 cases than applying the Oxford Government Response Tracker, the Public Health and Social Measures, or human mobility data as alternative predictors. A convergent cross-mapping suggests that economic activity reduction inferred from NO2 is a driver of case deceleration in most of the territories. This effect, however, is not linear, while further activity reductions were associated with weaker deceleration. Over the winter of 2020/2021, nearly 1 million daily COVID-19 cases could have been avoided by optimizing the timing and strength of activity reduction relative to a scenario based on the real distribution. Our study shows how satellite observations can provide surrogate data for activity reduction during the COVID-19 pandemic and monitor the effectiveness of containment to the pandemic before vaccines become widely available.


Assuntos
Poluição do Ar/efeitos adversos , COVID-19/epidemiologia , Aprendizado de Máquina , COVID-19/etiologia , China/epidemiologia , Humanos , Fatores Socioeconômicos
7.
Chem Soc Rev ; 52(24): 8531-8579, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37882143

RESUMO

Human-infecting pathogens that transmit through the air pose a significant threat to public health. As a prominent instance, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused the COVID-19 pandemic has affected the world in an unprecedented manner over the past few years. Despite the dissipating pandemic gloom, the lessons we have learned in dealing with pathogen-laden aerosols should be thoroughly reviewed because the airborne transmission risk may have been grossly underestimated. From a bioanalytical chemistry perspective, on-site airborne pathogen detection can be an effective non-pharmaceutic intervention (NPI) strategy, with on-site airborne pathogen detection and early-stage infection risk evaluation reducing the spread of disease and enabling life-saving decisions to be made. In light of this, we summarize the recent advances in highly efficient pathogen-laden aerosol sampling approaches, bioanalytical sensing technologies, and the prospects for airborne pathogen exposure measurement and evidence-based transmission interventions. We also discuss open challenges facing general bioaerosols detection, such as handling complex aerosol samples, improving sensitivity for airborne pathogen quantification, and establishing a risk assessment system with high spatiotemporal resolution for mitigating airborne transmission risks. This review provides a multidisciplinary outlook for future opportunities to improve the on-site airborne pathogen detection techniques, thereby enhancing the preparedness for more on-site bioaerosols measurement scenarios, such as monitoring high-risk pathogens on airplanes, weaponized pathogen aerosols, influenza variants at the workplace, and pollutant correlated with sick building syndromes.


Assuntos
COVID-19 , Pandemias , Humanos , Pandemias/prevenção & controle , Aerossóis e Gotículas Respiratórios , COVID-19/diagnóstico , COVID-19/prevenção & controle , SARS-CoV-2
8.
J Environ Manage ; 359: 121004, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38710146

RESUMO

In order to fully understand the carbon emission from different fuels in rural villages of China, especially in the typical atmospheric pollution areas. The characteristics of carbonaceous aerosols and carbon dioxide (CO2) with its stable carbon isotope (δ13C) were investigated in six households, which two households used coal, two households used wood as well as two households used biogas and liquefied petroleum gas (LPG), from two rural villages in Fenwei Plain from March to April 2021. It showed that the fine particulate matter (PM2.5) emitted from biogas and LPG couldn't be as lower as expected in this area. However, the clean fuels could relatively reduce the emissions of organic carbon (OC) and element carbon (EC) in PM2.5 compare to the solid fuels. The pyrolyzed carbon (OP) accounted more total carbon (TC) in coal than the other fuels use households, indicating that more water-soluble OC existed, and it still had the highest secondary organic carbon (SOC) than the other fuels. Meantime, the coal combustions in the two villages had the highest CO2 concentration of 527.6 ppm and 1120.6 ppm, respectively, while the clean fuels could effectively reduce it. The average δ13C values (-26.9‰) was much lighter than almost all the outdoor monitoring and similar to the δ13C values for coal combustion and vehicle emission, showing that they might be the main contributors of the regional atmospheric aerosol in this area. During the sandstorm, the indoor PM2.5 mass and CO2 were increasing obviously. The indoor cancer risk of PAHs for adults and children were greater than 1 × 10-6, exert a potential carcinogenic risk to human of solid fuels combustion in rural northern China. It is important to continue concern the solid fuel combustion and its health impact in rural areas.


Assuntos
Aerossóis , Dióxido de Carbono , Isótopos de Carbono , Material Particulado , Dióxido de Carbono/análise , China , Material Particulado/análise , Aerossóis/análise , Isótopos de Carbono/análise , Carvão Mineral , Poluentes Atmosféricos/análise , Carbono/análise , Humanos , Características da Família , População Rural , Monitoramento Ambiental
9.
J Environ Manage ; 356: 120600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38547823

RESUMO

The 'extreme' emission abatement during the lockdown (from the end of 2019 to the early 2020) provided an experimental period to investigate the corresponding source-specific effects of aerosol. In this study, the variations of source-specific light absorption (babs) and direct radiative effect (DRE) were obtained during and after the lockdown period by using the artificial neural network (ANN) and source apportionment environmental receptor model. The results showed that the babs decreased for all sources during the two periods. The most reductions were observed with ∼90% for traffic-related emissions (during the lockdown) and ∼85% for coal combustion (after the lockdown), respectively. Heightened babs (370 nm) values were obtained for coal and biomass burning during the lockdown, which was attributed to the enhanced atmospheric oxidization capacity. Nevertheless, the variations of babs (880 nm) after the lockdown was mainly due to the weakening of oxidation and reduced emissions of secondary precursors. The present study indicated that the large-scale emission reduction can promote both reductions of babs (370 nm) and DRE (34-68%) during the lockdown. The primary emissions decrease (e.g., Traffic emission) may enhance atmosphere oxidation, increase the ultraviolet wavelength light absorption and DRE efficiencies. The source-specific emission reduction may be contributed to various radiation effects, which is beneficial for the adopting of control strategies.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Carvão Mineral , Aerossóis/análise , Biomassa , Material Particulado/análise , China
10.
J Environ Sci (China) ; 138: 406-417, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135406

RESUMO

In this study, online water-soluble inorganic ions were detected to deduce the formation mechanism of secondary inorganic aerosol in Xianyang, China during wintertime. The dominant inorganic ions of sulfate (SO42-), nitrate (NO3-), and ammonium (NH4+) (the sum of those is abbreviated as SNA) accounted for 17%, 21%, and 12% of PM2.5 mass, respectively. While the air quality deteriorated from excellent to poor grades, the precursor gas sulfur dioxide (SO2) of SO42- increased and then decreased with a fluctuation, while nitrogen dioxide (NO2) and ammonia (NH3), precursors of NO3- and NH4+, and SNA show increasing trends. Meteorological factors including boundary layer height (BLH), temperature, and wind speed also show decline trends, except relative humidity (RH). Meanwhile, the secondary conversion ratio shows a remarkable increasing trend, indicating that there was a strong secondary transformation. From the perspective of chemical mechanisms, RH is positively correlated with sulfur oxidation ratios (SOR), nitrogen oxidation ratios (NOR), and ammonia conversion ratios, representing that the increase of humidity could promote the generation of SNA. Notably, SOR and NOR were also positively related to the ammonia. On the one hand, the low wind speed and BLH led to the accumulation of pollutants. On the other hand, the increases of RH and ammonia promoted more formations of SNA and PM2.5. The results advance our identification of the contributors to the haze episodes and assist to establish more efficient emission controls in Xianyang, in addition to other cities with similar emission and geographical characteristics.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Material Particulado/análise , Amônia , Monitoramento Ambiental , Estações do Ano , China , Nitratos/análise , Nitrogênio , Aerossóis/análise
11.
Environ Sci Technol ; 57(45): 17598-17609, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37906717

RESUMO

Activating surface lattice oxygen (Olatt) through the modulation of metal-oxygen bond strength has proven to be an effective route for facilitating the catalytic degradation of volatile organic compounds (VOCs). Although this strategy has been implemented via the construction of the TM1-O-TM2 (TM represents a transition metal) structure in various reactions, the underlying principle requires exploration when using different TMs. Herein, the Cu2+-O-Fe3+ structure was created by developing CuO-Fe3O4 composites with enhanced interfacial effect, which exhibited superior catalytic activity to their counterparts, with T90 (the temperature of toluene conversion reaching 90%) decreasing by approximately 50 °C. Structural analyses and theoretical calculations demonstrated that the active Cu2+-O-Fe3+ sites at the CuO-Fe3O4 interface improved low-temperature reducibility and oxygen species activity. Particularly, X-ray absorption fine structure spectroscopy revealed the contraction and expansion of Cu-O and Fe-O bonds, respectively, which were responsible for the activation of the surface Olatt. A mechanistic study revealed that toluene can be oxidized by rapid dehydrogenation of methyl assisted by the highly active surface Olatt and subsequently undergo ring-opening and deep mineralization into CO2 following the Mars-van Krevelen mechanism. This study provided a novel strategy to explore interface-enhanced TM catalysts for efficient surface Olatt activation and VOCs abatement.


Assuntos
Cobre , Oxigênio , Tolueno
12.
Environ Sci Technol ; 57(23): 8708-8718, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37265070

RESUMO

The molecular composition of organic aerosols in ambient PM2.5 was investigated in an urban area in the Guanzhong basin of northwest China during a severe regional haze episode in the winter of 2018/2019. Organic matter, accounting for 20-35% of PM2.5 mass concentration, was characterized using direct infusion and electrospray ionization coupled with high-resolution Orbitrap mass spectrometry. The number of organic molecular formula assignments was primarily dominated by organosulfur species (OrgS, including CHOS and CHONS) in negative ion mode. The number and peak signal intensity of OrgS distinctly increased during the severe haze episode. Organosulfates and nitrooxy-organosulfates constituted the majority number (72-94%) of OrgS over the entire period. Although the OrgS were mostly present in aliphatic molecular structures, an increase in the number of polycyclic aromatic OrgS on haze days revealed the enhanced contribution from anthropogenic sources. The number of OrgS strongly correlated with ambient relative humidity and the oxidation ratios of sulfur and nitrogen, suggesting the important roles of aqueous phase chemistry and atmospheric oxidation in the formation of OrgS. A thorough understanding of the significance of OrgS will be essential to assess and mitigate the adverse impacts of haze pollution.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , China , Poluição Ambiental/análise , Estações do Ano , Aerossóis/análise , Material Particulado/análise
13.
Environ Sci Technol ; 57(38): 14280-14288, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37706300

RESUMO

Methoxyphenols and nitroaromatic compounds (NACs) have strong atmospheric radiative forcing effects and adverse effects on human health. They are emitted from the incomplete combustion of solid fuels and are secondarily formed through photochemical reactions. Here, an on-site study was conducted to determine the primary emission and secondary formation of particulate phase products from a variety of solid fuels through a potential aerosol mass-oxidation flow reactor. Emission factors for total quantified methoxyphenols and NACs (i.e., EF∑Methoxyphenols and EF∑NACs) varied by 2 orders of magnitude among different fuels, which were greatly influenced by volatile matter, incomplete combustibility, flame intensity, and combustion temperature. Guaiacol and 4-nitro-2-vinylphenol were used as tracers for primary organic aerosol due to the low aged-to-fresh ratios (0.21-0.97), while 4-methyl-guaiacol, 4-ethyl-guaiacol, eugenol, 4-methyl-syringol, isoeugenol, acetovanillone, syringaldehyde, homovanillin acid, vanillin acid, and syringic acid were identified as secondary organic aerosol (SOA) (aged-to-fresh ratios between 1.90 and 4.20). During simulated aging, the -CHO group reacted with the hydroxyl radical (•OH) to form the -COOH group, but there was no correlation between syringol and 4-nitrosyringol, implying that •OH is the main reactant rather than the nitriate radical (•NO3) in the atmospheric aging processes of methoxyphenols. Aging caused substantially different emission profiles due to variable photochemical reaction properties. The fresh EFs for guaiacol emitted from the biomass burning ranged from 3.80 ± 0.44 to 26.2 ± 5.40 mg·kg-1, which were much higher than those in coal combustions (of 0.03 ± 0.01 to 1.42 ± 0.28 mg·kg-1). However, the aged EFs (EFaged) for guaiacol was 1.02 ± 0.06 to 1.61 ± 0.11 mg·kg-1 in most biomass combustions, which were comparable with those of the bituminous chunk (1.20 ± 0.16 mg·kg-1). Therefore, guaiacol, a traditional biomass marker, is not an ideal tracer for aged PM2.5 emitted from biomass burning. Indeed, the syringol/guaiacol and syringol/4-nitrosyringol ratios were found to be more suitable and efficient to be used in source characterization.


Assuntos
Envelhecimento , Pirogalol , Humanos , Idoso , Biomassa , Carvão Mineral
14.
Environ Sci Technol ; 57(35): 13236-13246, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37615390

RESUMO

Development of cost-effective oxide catalysts holds the key to the removal of toluene, one of the most important volatile organic compounds. However, the catalysts follow varied working mechanisms at different reaction temperatures, posing a challenge to achieving efficient toluene removal over a wide temperature range. Here we report an agitation-assisted molten salt method, which achieves the rational doping on a two-dimensional Co3O4 catalyst and forms two different structures of active sites to enhance catalytic oxidation of toluene in specific temperature intervals, enabling a facile tandem design for working in a wide temperature range. Specifically, Co3O4 is doped with Cu at the octahedral site (Cu-Co3O4) and Zn at the tetrahedral site (Zn-Co3O4) to form CuOh-O-CoTe and ZnTe-O-CoOh structures on the surface, respectively. Mechanistic studies reveal the different working mechanisms of these two active sites toward remarkable performance enhancement at specific temperature intervals, and the improved performance derived from accelerated consumption of intermediates adsorbed on the catalyst surface. Taken together, Cu-Co3O4 and Zn-Co3O4 achieve excellent toluene purification performance over a wide temperature range. This work provides insights into the mechanism-oriented design of active sites at the atomic level.


Assuntos
Cobalto , Tolueno , Temperatura , Catálise
15.
Proc Natl Acad Sci U S A ; 117(52): 33005-33010, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33323486

RESUMO

Anthropogenic combustion-derived water (CDW) may accumulate in an airshed due to stagnant air, which may further enhance the formation of secondary aerosols and worsen air quality. Here we collected three-winter-season, hourly resolution, water-vapor stable H and O isotope compositions together with atmospheric physical and chemical data from the city of Xi'an, located in the Guanzhong Basin (GZB) in northwestern China, to elucidate the role of CDW in particulate pollution. Based on our experimentally determined water vapor isotope composition of the CDW for individual and weighted fuels in the basin, we found that CDW constitutes 6.2% of the atmospheric moisture on average and its fraction is positively correlated with [PM2.5] (concentration of particulate matter with an aerodynamic diameter less than 2.5 µm) as well as relative humidity during the periods of rising [PM2.5]. Our modeling results showed that CDW added additional average 4.6 µg m-3 PM2.5 during severely polluted conditions in the GZB, which corresponded to an average 5.1% of local anthropogenic [PM2.5] (average at ∼91.0 µg m-3). Our result is consistent with the proposed positive feedback between the relative humidity and a moisture sensitive air-pollution condition, alerting to the nontrivial role of CDW when considering change of energy structure such as a massive coal-to-gas switch in household heating in winter.

16.
Proc Natl Acad Sci U S A ; 117(10): 5184-5189, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094170

RESUMO

Wildfire can influence climate directly and indirectly, but little is known about the relationships between wildfire and climate during the Quaternary, especially how wildfire patterns varied over glacial-interglacial cycles. Here, we present a high-resolution soot record from the Chinese Loess Plateau; this is a record of large-scale, high-intensity fires over the past 2.6 My. We observed a unique and distinct glacial-interglacial cyclicity of soot over the entire Quaternary Period synchronous with marine δ18O and dust records, which suggests that ice-volume-modulated aridity controlled wildfire occurrences, soot production, and dust fluxes in central Asia. The high-intensity fires were also found to be anticorrelated with global atmospheric CO2 records over the past eight glacial-interglacial cycles, implying a possible connection between the fires, dust, and climate mediated through the iron cycle. The significance of this hypothetical connection remains to be determined, but the relationships revealed in this study hint at the potential importance of wildfire for the global climate system.

17.
Proc Natl Acad Sci U S A ; 117(18): 9755-9761, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32300007

RESUMO

Aerosol-radiation interaction (ARI) plays a significant role in the accumulation of fine particulate matter (PM2.5) by stabilizing the planetary boundary layer and thus deteriorating air quality during haze events. However, modification of photolysis by aerosol scattering or absorbing solar radiation (aerosol-photolysis interaction or API) alters the atmospheric oxidizing capacity, decreases the rate of secondary aerosol formation, and ultimately alleviates the ARI effect on PM2.5 pollution. Therefore, the synergetic effect of both ARI and API can either aggravate or even mitigate PM2.5 pollution. To test the effect, a fully coupled Weather Research and Forecasting (WRF)-Chem model has been used to simulate a heavy haze episode in North China Plain. Our results show that ARI contributes to a 7.8% increase in near-surface PM2.5 However, API suppresses secondary aerosol formation, and the combination of ARI and API results in only 4.8% net increase of PM2.5 Additionally, API increases the solar radiation reaching the surface and perturbs aerosol nucleation and activation to form cloud condensation nuclei, influencing aerosol-cloud interaction. The results suggest that API reduces PM2.5 pollution during haze events, but adds uncertainties in climate prediction.

18.
J Environ Manage ; 327: 116821, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442450

RESUMO

In order to investigate the variations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 µm) chemical components responding to the pollution control strategy and their effect on light extinction (bext) in the Guanzhong Plain (GZP), the comparisons of urban atmospheric chemical components during the heating seasons were extensively conducted for three years. The average concentration of PM2.5 decreased significantly from 117.9 ± 57.3 µg m-3 in the heating season 1 (HS1) to 53.5 ± 31.3 µg m-3 in the heating season 3 (HS3), which implied that the effective strategies were implemented in recent years. The greatest contribution to PM2.5 (∼30%) was from Organic matter (OM). The heightened contributions of the secondary inorganic ions (SNA, including NO3-, SO42-, and NH4+) to PM2.5 were observed with the values of 34% (HS1), 41% (HS2), and 42% (HS3), respectively. The increased percentages of NO3- contributions indicated that the emission of NOx should be received special attention in the GZP. The comparison of PM2.5 chemical compositions and implications across major regions of China and the globe were investigated. NH4NO3 was the most important contributor to bext in three heating seasons. The average bext was decreased from 694.3 ± 399.1 Mm-1 (HS1) to 359.3 ± 202.3 Mm-1 (HS3). PM2.5 had a threshold concentration of 75 µg m-3, 64 µg m-3, and 57 µg m-3 corresponding to the visual range (VR) < 10 km in HS1, HS2, and HS3, respectively. The enhanced impacts of the oxidant on PM2.5 and O3 were observed based on the long-term variations in PM2.5 and OX (Oxidant, the sum of O3 and NO2 mixing ratios) over the five heating seasons and PM2.5 and O3 over six summers from 2016 to 2021. The importance of coordinated control of PM2.5 and O3 was also investigated in the GZP.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Estações do Ano , Calefação , Monitoramento Ambiental , Material Particulado/análise , China , Aerossóis/análise
19.
Adv Atmos Sci ; : 1-23, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37359906

RESUMO

Atmospheric chemistry research has been growing rapidly in China in the last 25 years since the concept of the "air pollution complex" was first proposed by Professor Xiaoyan TANG in 1997. For papers published in 2021 on air pollution (only papers included in the Web of Science Core Collection database were considered), more than 24 000 papers were authored or co-authored by scientists working in China. In this paper, we review a limited number of representative and significant studies on atmospheric chemistry in China in the last few years, including studies on (1) sources and emission inventories, (2) atmospheric chemical processes, (3) interactions of air pollution with meteorology, weather and climate, (4) interactions between the biosphere and atmosphere, and (5) data assimilation. The intention was not to provide a complete review of all progress made in the last few years, but rather to serve as a starting point for learning more about atmospheric chemistry research in China. The advances reviewed in this paper have enabled a theoretical framework for the air pollution complex to be established, provided robust scientific support to highly successful air pollution control policies in China, and created great opportunities in education, training, and career development for many graduate students and young scientists. This paper further highlights that developing and low-income countries that are heavily affected by air pollution can benefit from these research advances, whilst at the same time acknowledging that many challenges and opportunities still remain in atmospheric chemistry research in China, to hopefully be addressed over the next few decades.

20.
Environ Geochem Health ; 45(3): 1027-1044, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35978258

RESUMO

The PM2.5-bounded elements were measured in outdoor and indoor from two urban middle schools in Xi'an. The PM2.5 mass was from 42.4 to 283.7 µg/m3 with bounded element from 3.4 to 41.7 µg/m3. Both the particle mass and the bounded elements displayed higher levels compared with previous studies in school environments. The most abundant elements were Ca, K, Fe, S, Zn and Cl both indoor and outdoor in two schools, which accounted for about 90% of the total elements. Strong correlations between indoor and outdoor were obtained along with relative effect from students' and teachers' activities on the indoor distributions between workdays and weekends. There had different indoor/outdoor (I/O) distributions for the two schools. It revealed the main outdoor sources for elements in JT and predominance of indoor sources in HT. The principal component analysis investigated main sources of elements in this study were coal combustion, geogenic dust and industrial emission, even though there displayed differences in the two school classrooms. The health risk assessment showed that the cancer risk for Ni and Pb was below the safe value while As and Cr might pose acceptable potential threat to both students' and teachers' health. The total non-cancer risks of accumulative multi-metals in JT exhibited to be higher than 1, indicating that there existed the potential non-carcinogenic health risks of exposure metals.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Oligoelementos , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Oligoelementos/análise , Poeira/análise , Medição de Risco , Instituições Acadêmicas , China , Monitoramento Ambiental , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA