Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 73(19): 6876-6890, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36040843

RESUMO

Programmed cell death (PCD) is essential for wood development in trees. However, the determination of crucial factors involved in xylem PCD of wood development is still lacking. Here, two Populus trichocarpa typical aspartic protease (AP) genes, AP17 and AP45, modulate xylem maturation, especially fibre PCD, during wood formation. AP17 and AP45 were dominantly expressed in the fibres of secondary xylem, as suggested by GUS expression in APpro::GUS transgenic plants. Cas9/gRNA-induced AP17 or AP45 mutants delayed secondary xylem fibre PCD, and ap17ap45 double mutants showed more serious defects. Conversely, AP17 overexpression caused premature PCD in secondary xylem fibres, indicating a positive modulation in wood fibre PCD. Loss of AP17 and AP45 did not alter wood fibre wall thickness, whereas the ap17ap45 mutants showed a low lignin content in wood. However, AP17 overexpression led to a significant decrease in wood fibre wall thickness and lignin content, revealing the involvement in secondary cell wall synthesis during wood formation. In addition, the ap17ap45 mutant and AP17 overexpression plants resulted in a significant increase in saccharification yield in wood. Overall, AP17 and AP45 are crucial modulators in xylem maturation during wood development, providing potential candidate genes for engineering lignocellulosic wood for biofuel utilization.


Assuntos
Ácido Aspártico Proteases , Populus , Populus/metabolismo , Madeira , Lignina/metabolismo , Regulação da Expressão Gênica de Plantas , Xilema , Plantas Geneticamente Modificadas/metabolismo , Ácido Aspártico Proteases/genética , Apoptose , Parede Celular/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
New Phytol ; 231(4): 1478-1495, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33713445

RESUMO

Plant cellulose is synthesized by a large plasma membrane-localized cellulose synthase (CesA) complex. However, an overall functional determination of secondary cell wall (SCW) CesAs is still lacking in trees, especially one based on gene knockouts. Here, the Cas9/gRNA-induced knockouts of PtrCesA4, 7A, 7B, 8A and 8B genes were produced in Populus trichocarpa. Based on anatomical, immunohistochemical and wood composition evidence, we gained a comprehensive understanding of five SCW PtrCesAs at the genetic level. Complete loss of PtrCesA4, 7A/B or 8A/B led to similar morphological abnormalities, indicating similar and nonredundant genetic functions. The absence of the gelatinous (G) layer, one-layer-walled fibres and a 90% decrease in cellulose in these mutant woods revealed that the three classes of SCW PtrCesAs are essential for multilayered SCW structure and wood G-fibre. In addition, the mutant primary and secondary phloem fibres lost the n(G + L)- and G-layers and retained the thicker S-layers (L, lignified; S, secondary). Together with polysaccharide immunolocalization data, these findings suggest differences in the role of SCW PtrCesAs-synthesized cellulose in wood and phloem fibre wall structures. Overall, this functional understanding of the SCW PtrCesAs provides further insights into the impact of lacking cellulose biosynthesis on growth, SCW, wood G-fibre and phloem fibre wall structures in the tree.


Assuntos
Parede Celular/enzimologia , Glucosiltransferases/metabolismo , Populus , Sistemas CRISPR-Cas , Celulose/metabolismo , Técnicas de Inativação de Genes , Populus/enzimologia , Populus/genética , RNA Guia de Cinetoplastídeos , Madeira/metabolismo
3.
BMC Plant Biol ; 19(1): 276, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31234799

RESUMO

BACKGROUND: Aspartic protease (AP) is one of four large proteolytic enzyme families that are involved in plant growth and development. Little is known about the AP gene family in tree species, although it has been characterized in Arabidopsis, rice and grape. The AP genes that are involved in tree wood formation remain to be determined. RESULTS: A total of 67 AP genes were identified in Populus trichocarpa (PtAP) and classified into three categories (A, B and C). Chromosome mapping analysis revealed that two-thirds of the PtAP genes were located in genome duplication blocks, indicating the expansion of the AP family by segmental duplications in Populus. The microarray data from the Populus eFP browser demonstrated that PtAP genes had diversified tissue expression patterns. Semi-qRT-PCR analysis further determined that more than 10 PtAPs were highly or preferentially expressed in the developing xylem. When the involvement of the PtAPs in wood formation became the focus, many SCW-related cis-elements were found in the promoters of these PtAPs. Based on PtAPpromoter::GUS techniques, the activities of PtAP66 promoters were observed only in fiber cells, not in the vessels of stems as the xylem and leaf veins developed in the transgenic Populus tree, and strong GUS signals were detected in interfascicular fiber cells, roots, anthers and sepals of PtAP17promoter::GUS transgenic plants. Intensive GUS activities in various secondary tissues implied that PtAP66 and PtAP17 could function in wood formation. In addition, most of the PtAP proteins were predicted to contain N- and (or) O-glycosylation sites, and the integration of PNGase F digestion and western blotting revealed that the PtAP17 and PtAP66 proteins were N-glycosylated in Populus. CONCLUSIONS: Comprehensive characterization of the PtAP genes suggests their functional diversity during Populus growth and development. Our findings provide an overall understanding of the AP gene family in trees and establish a better foundation to further describe the roles of PtAPs in wood formation.


Assuntos
Ácido Aspártico Proteases/genética , Genes de Plantas , Família Multigênica , Proteínas de Plantas/genética , Populus/genética , Madeira/crescimento & desenvolvimento , Parede Celular/genética , Sequência Conservada , Duplicação Gênica , Perfilação da Expressão Gênica , Glicosilação , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/enzimologia , Populus/crescimento & desenvolvimento , Regiões Promotoras Genéticas
4.
Plant Physiol ; 168(1): 205-21, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25810095

RESUMO

Maturation of chloroplast ribosomal RNAs (rRNAs) comprises several endoribonucleolytic and exoribonucleolytic processing steps. However, little is known about the specific enzymes involved and the cleavage steps they catalyze. Here, we report the functional characterization of the single Arabidopsis (Arabidopsis thaliana) gene encoding a putative YbeY endoribonuclease. AtYbeY null mutants are seedling lethal, indicating that AtYbeY function is essential for plant growth. Knockdown plants display slow growth and show pale-green leaves. Physiological and ultrastructural analyses of atybeY mutants revealed impaired photosynthesis and defective chloroplast development. Fluorescent microcopy analysis showed that, when fused with the green fluorescence protein, AtYbeY is localized in chloroplasts. Immunoblot and RNA gel-blot assays revealed that the levels of chloroplast-encoded subunits of photosynthetic complexes are reduced in atybeY mutants, but the corresponding transcripts accumulate normally. In addition, atybeY mutants display defective maturation of both the 5' and 3' ends of 16S, 23S, and 4.5S rRNAs as well as decreased accumulation of mature transcripts from the transfer RNA genes contained in the chloroplast rRNA operon. Consequently, mutant plants show a severe deficiency in ribosome biogenesis, which, in turn, results in impaired plastid translational activity. Furthermore, biochemical assays show that recombinant AtYbeY is able to cleave chloroplast rRNAs as well as messenger RNAs and transfer RNAs in vitro. Taken together, our findings indicate that AtYbeY is a chloroplast-localized endoribonuclease that is required for chloroplast rRNA processing and thus for normal growth and development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Sequência Conservada , Endorribonucleases/metabolismo , Processamento Pós-Transcricional do RNA/genética , RNA de Cloroplastos/genética , RNA Ribossômico/genética , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência de Bases , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Endorribonucleases/química , Endorribonucleases/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Fotossíntese , Folhas de Planta/fisiologia , Polirribossomos/metabolismo , Subunidades Proteicas/metabolismo , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Frações Subcelulares/metabolismo
5.
J Proteomics ; 126: 94-108, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26047713

RESUMO

Wood is derived from the secondary growth of tree stems. In this study, we investigated the global changes of protein abundance in Populus early stems using a proteomic approach. Morphological and histochemical analyses revealed three typical stages during Populus early stems, which were the primary growth stage, the transition stage from primary to secondary growth and the secondary growth stage. A total of 231 spots were differentially abundant during various growth stages of Populus early stems. During Populus early stem lignifications, 87 differential spots continuously increased, while 49 spots continuously decreased. These two categories encompass 58.9% of all differential spots, which suggests significant molecular changes from primary to secondary growth. Among 231 spots, 165 unique proteins were identified using LC-ESI-Q-TOF-MS, which were classified into 14 biological function groups. The proteomic characteristics indicated that carbohydrate metabolism, oxido-reduction, protein degradation and secondary cell wall metabolism were the dominantly occurring biochemical processes during Populus early stem development. This study helps in elucidating biochemical processes and identifies potential wood formation-related proteins during tree early stem development. It is a comprehensive proteomic investigation on tree early stem development that, for the first time, reveals the overall molecular networks that occur during Populus early stem lignifications.


Assuntos
Proteínas de Plantas/biossíntese , Caules de Planta/metabolismo , Populus/metabolismo , Proteoma/biossíntese , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA