Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Water Sci Technol ; 78(3-4): 634-643, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30208004

RESUMO

Mainstream partial nitritation/anammox (PN/A), coupled with excess biological phosphorus removal, in a 200,000 m3/d step-feed activated sludge process (Train 2) in the Changi Water Reclamation Plant (WRP), Singapore, has been studied and reported. This paper presents an overview of process performance and the microbial community during the period from 2011 to 2016. The site data showed that, along with the reduction of dissolved oxygen (DO) from 1.7 to 1.0 mg O2/L in the aeration zones, the concentrations of ammonium and nitrate of the final effluent increased, while nitrite decreased, resulting in an increase of 2.4 mg N/L of total inorganic nitrogen. Autotrophic nitrogen removal was higher than heterotrophic biological nitrogen removal under higher DO concentration conditions, but decreased under low DO operating condition. These macro-scale changes were caused by shifts of the nitrogen-converting microbial community. The ammonia oxidizing bacteria (AOB) population abundance was reduced by 30 times, while the nitrite oxidizing bacteria (NOB) population abundance and specific activity increased significantly with a shift of dominant genus from Nitrobacter to Nitrospira. The ratio of AOB and NOB specific activities were reduced from 12.8 to 1.6, and the ex situ nitrite accumulation ratio reduced from 76% to 29%. Changes in the microbial community and overall process performance illustrated that, compared to the excellent NOB suppression under high DO conditions, NOB were more active after the DO concentration reduction despite still being partly suppressed. This case study demonstrated, for the first time, the influence of DO reduction on the nitrogen conversion microbial community and PN/A process performance for a suspended growth system. Its relevance to biofilm and hybrid PN/A processes is also discussed.


Assuntos
Oxigênio , Esgotos , Anaerobiose , Reatores Biológicos , Microbiota , Nitritos , Nitrogênio , Oxirredução , Singapura , Água
2.
Appl Microbiol Biotechnol ; 101(4): 1365-1383, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28084538

RESUMO

Driven by energy neutral/positive of wastewater treatment plants, significant efforts have been made on the research and development of mainstream partial nitritation and anaerobic ammonium oxidation (anammox) (PN/A) (deammonification) process since the early 2010s. To date, feasibility of mainstream PN/A process has been demonstrated and proven by experimental results at various scales although with the low loading rates and elevated nitrogen concentration in the effluent at low temperatures (15-10 °C). This review paper provides an overview of the current state of research and development of mainstream PN/A process and critically analyzes the bottlenecks for its full-scale application. The paper discusses the following: (i) the current status of research and development of mainstream PN/A process; (ii) the interactions among aerobic ammonium-oxidizing bacteria, aerobic nitrite-oxidizing bacteria, anammox bacteria, and heterotrophic bacteria; (iii) the suppression of aerobic nitrite-oxidizing bacteria; (iv) process and bioreactors; and (v) suggested further studies including efficient and robust carbon concentrating pretreatment, deepening of understanding competition between autotrophic nitrogen-converting organisms, intensification of biofilm anammox activity, reactor design, and final polishing.


Assuntos
Compostos de Amônio/metabolismo , Nitrogênio/metabolismo , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos/microbiologia , Purificação da Água/métodos
3.
Water Sci Technol ; 75(3-4): 741-751, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28192367

RESUMO

Mainstream partial nitritation and Anammox (PN/A) has been observed and studied in the step-feed activated sludge process at the Changi water reclamation plant (WRP), which is the largest WRP (800,000 m3/d) in Singapore. This paper presents the study results for enhanced biological phosphorus removal (EBPR) co-existing with PN/A in the activated sludge process. Both the in-situ EBPR efficiency and ex-situ activities of phosphorus release and uptake were high. The phosphorus accumulating organisms were dominant, with little presence of glycogen accumulating organisms in the activated sludge. Chemical oxygen demand (COD) mass balance illustrated that the carbon usage for EBPR was the same as that for heterotrophic denitrification, owing to autotrophic PN/A conversions. This much lower carbon demand for nitrogen removal, compared to conventional biological nitrogen removal, made effective EBPR possible. This paper demonstrated for the first time the effective EBPR co-existence with PN/A in the mainstream in a large full-scale activated sludge process, and the feasibility to accommodate EBPR into the mainstream PN/A process. It also shows EBPR can work under warm climates.


Assuntos
Nitrogênio/análise , Fósforo/análise , Esgotos/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Aerobiose , Amônia/química , Anaerobiose , Processos Autotróficos , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos/microbiologia , Carbono/análise , Desnitrificação , Nitrificação , Nitrogênio/química , Esgotos/microbiologia , Singapura
4.
Water Sci Technol ; 74(2): 448-56, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27438250

RESUMO

The combination of simultaneous nitrification-denitrification (SND) with enhanced biological phosphorus removal (EBPR) provides a more efficient and economically viable option for nutrient removal from municipal wastewater compared to conventional two-step nitrification-denitrification. This study analyzed the nutrients (N and P) profiles in a full-scale municipal wastewater reclamation plant (WRP) located in the tropical region, in which more than 90% of nitrogen was removed. Interestingly, average SND efficiency in aerobic zones was found to be up to 50%, whereas phosphorus profile displayed a clear cyclic release and uptake pattern with a phosphorus removal efficiency of up to 76%. The capability of sludge to perform SND and EBPR was further confirmed through a series of batch experiments. Microbial analysis revealed the presence of Accumulibacter and Tetrasphaera phosphate accumulating organisms in the plant, while few glycogen accumulating organisms (GAO) was observed. This study showed the significant occurrence of combined SND and EBPR, known as simultaneous nitrification, denitrification and phosphorus removal (SNDPR), in the studied WRP under warm climate. The possible causes behind the observed SNDPR were also discussed.


Assuntos
Desnitrificação , Nitrificação , Fósforo/metabolismo , Eliminação de Resíduos Líquidos/métodos , Esgotos/análise , Esgotos/microbiologia , Clima Tropical , Águas Residuárias/análise , Águas Residuárias/microbiologia
5.
Appl Microbiol Biotechnol ; 99(6): 2485-90, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25638355

RESUMO

The deammonification process combining partial nitritation and anaerobic ammonium oxidation has been considered as a viable option for energy-efficient used water treatment. So far, many full-scale sidestream deammonification plants handling high-ammonia used water have been in successful operation since Anammox bacteria were first discovered in the 1990s. However, large-scale application of this process for treating municipal used water with low ammonia concentration has rarely been reported. Compared to the sidestream deammonification process, the mainstream deammonification process for municipal used water treatment faces three main challenges, i.e., (i) high COD/N ratio leading to denitrifiers outcompeting Anammox bacteria, (ii) numerous difficulties in selective retention of ammonia-oxidizing bacteria (AOB) over nitrite-oxidizing bacteria (NOB), and (iii) sufficient accumulation of Anammox bacteria. Therefore, this paper attempts to provide a detailed analysis of these challenges and possible solutions towards sustainable mainstream deammonification process.


Assuntos
Eliminação de Resíduos Líquidos , Purificação da Água/métodos , Amônia/química , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Nitritos/química , Esgotos/microbiologia
6.
Water Res ; 111: 393-403, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28110143

RESUMO

Enhanced biological phosphorus removal (EBPR) is a widely used process in wastewater treatment that requires anaerobic/aerobic or anaerobic/anoxic cycling. Surprisingly, phosphorus (P) release was observed in the presence of nitrate in the anoxic compartment of the activated sludge tank in a full-scale treatment plant with the Modified Ludzack Ettinger configuration. We therefore studied the potential of this full-scale activated sludge community to perform EBPR under anoxic/aerobic cycling. The polyphosphate accumulating organism (PAO) Candidatus Accumulibacter represented 3.3% of total bacteria based on 16S rRNA gene amplicon sequencing, and metagenome analysis suggested it was likely to be dominated by Clade IIC. Using acetate as the carbon source in batch experiments, active denitrifying organisms (DPAOs) were estimated to comprise 39-44% of the total PAO population in the sludge, with the remaining 56-61% unable to utilize nitrate. When propionate was provided as the organic carbon source, 95% of the PAO population was unable to denitrify. EBPR occurred under defined anoxic/aerobic conditions, despite the presence of DPAOs, when synthetic wastewater was supplemented with either acetate or propionate or when primary effluent was supplied. In addition, the P release and subsequent uptake rates under anoxic/aerobic conditions were comparable to those observed under anaerobic/aerobic conditions. In contrast, a significant reduction in P release rate was observed when acetate was provided under oxic conditions. We postulate that non-DPAOs that recognize the anoxic condition as pseudo-anaerobic were the key players in anoxic/aerobic EBPR.


Assuntos
Desnitrificação , RNA Ribossômico 16S , Reatores Biológicos/microbiologia , Fósforo , Polifosfatos , Esgotos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA