Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 631(8019): 60-66, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38867046

RESUMO

Broken time-reversal symmetry in the absence of spin order indicates the presence of unusual phases such as orbital magnetism and loop currents1-4. The recently discovered kagome superconductors AV3Sb5 (where A is K, Rb or Cs)5,6 display an exotic charge-density-wave (CDW) state and have emerged as a strong candidate for materials hosting a loop current phase. The idea that the CDW breaks time-reversal symmetry7-14 is, however, being intensely debated due to conflicting experimental data15-17. Here we use laser-coupled scanning tunnelling microscopy to study RbV3Sb5. By applying linearly polarized light along high-symmetry directions, we show that the relative intensities of the CDW peaks can be reversibly switched, implying a substantial electro-striction response, indicative of strong nonlinear electron-phonon coupling. A similar CDW intensity switching is observed with perpendicular magnetic fields, which implies an unusual piezo-magnetic response that, in turn, requires time-reversal symmetry breaking. We show that the simplest CDW that satisfies these constraints is an out-of-phase combination of bond charge order and loop currents that we dub a congruent CDW flux phase. Our laser scanning tunnelling microscopy data open the door to the possibility of dynamic optical control of complex quantum phenomenon in correlated materials.


Assuntos
Supercondutividade , Microscopia de Tunelamento , Campos Magnéticos , Fônons , Elétrons , Luz
2.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38445993

RESUMO

The optical floating zone crystal growth technique is a well-established method for obtaining large, high-purity single crystals. While the floating zone method has been constantly evolving for over six decades, the development of high-pressure (up to 1000 bar) growth systems has only recently been realized via the combination of laser-based heating sources with an all-metal chamber. While our inaugural high-pressure laser floating zone furnace design demonstrated the successful growth of new volatile and metastable phases, the furnace design faces several limitations with imaging quality, heating profile control, and chamber cooling power. Here, we present a second-generation design of the high-pressure laser floating zone furnace, "Laser Optical Kristallmacher II" (LOKII), and demonstrate that this redesign facilitates new advances in crystal growth by highlighting several exemplar materials: α-Fe2O3, ß-Ga2O3, and La2CuO4+δ. Notably, for La2CuO4+δ, we demonstrate the feasibility and long-term stability of traveling solvent floating zone growth under a record pressure of 700 bar.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA