Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 14777, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31594960

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

2.
Sci Rep ; 8(1): 9155, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29904181

RESUMO

The relativistic Doppler effect is one of the most famous implications of the principles of special relativity and is intrinsic to moving radiation sources, relativistic optics and many astrophysical phenomena. It occurs in the case of a plasma sail accelerated to relativistic velocities by an external driver, such as an ultra-intense laser pulse. Here we show that the relativistic Doppler effect on the high energy synchrotron photon emission (~10 MeV), strongly depends on two intrinsic properties of the plasma (charge state and ion mass) and the transverse extent of the driver. When the moving plasma becomes relativistically transparent to the driver, we show that the γ-ray emission is Doppler-boosted and the angular emission decreases; optimal for the highest charge-to-mass ratio ion species (i.e. a hydrogen plasma). This provides new fundamental insight into the generation of γ-rays in extreme conditions and informs related experiments using multi-petawatt laser facilities.

3.
Sci Rep ; 7(1): 17312, 2017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29229952

RESUMO

Matter can be transferred into energy and the opposite transformation is also possible by use of high-power lasers. A laser pulse in plasma can convert its energy into γ-rays and then e - e + pairs via the multi-photon Breit-Wheeler process. Production of dense positrons at GeV energies is very challenging since extremely high laser intensity ~1024 Wcm-2 is required. Here we propose an all-optical scheme for ultra-bright γ-ray emission and dense positron production with lasers at intensity of 1022-23 Wcm-2. By irradiating two colliding elliptically-polarized lasers onto two diamondlike carbon foils, electrons in the focal region of one foil are rapidly accelerated by the laser radiation pressure and interact with the other intense laser pulse which penetrates through the second foil due to relativistically induced foil transparency. This symmetric configuration enables efficient Compton back-scattering and results in ultra-bright γ-photon emission with brightness of ~1025 photons/s/mm2/mrad2/0.1%BW at 15 MeV and intensity of 5 × 1023 Wcm-2. Our first three-dimensional simulation with quantum-electrodynamics incorporated shows that a GeV positron beam with density of 2.5 × 1022 cm-3 and flux of 1.6 × 1010/shot is achieved. Collective effects of the pair plasma may be also triggered, offering a window on investigating laboratory astrophysics at PW laser facilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA