RESUMO
The clinical translation of polysarcosine (pSar) as polyethylene glycol (PEG) replacement in the development of novel nanomedicines creates a broad demand of polymeric material in high-quality making high-purity sarcosine N-carboxyanhydride (Sar-NCA) as monomer for its production inevitable. Within this report, we present the use of triethyloxonium tetrafluoroborate in Sar-NCA synthesis with focus on amino acid and chloride impurities to avoid the sublimation of Sar-NCAs. With a view towards upscaling into kilogram or ton scale, a new methodology of monomer purification is introduced by utilizing the Meerwein's Salt triethyloxonium tetrafluoroborate to remove chloride impurities by covalent binding and converting chloride ions into volatile products within a single step. The novel straightforward technique enables access to monomers with significantly reduced chloride content (<100â ppm) compared to Sar-NCA derived by synthesis or sublimation. The derived monomers enable the controlled-living polymerization in DMF and provide access to pSar polymers with Poisson-like molecular weight distribution within a high range of chain lengths (Xn 25-200). In conclusion, the reported method can be easily applied to Sar-NCA synthesis or purification of commercially available pSar-NCAs and eases access to well-defined hetero-telechelic pSar polymers.
Assuntos
Cloretos , Polimerização , Sarcosina , Sarcosina/química , Sarcosina/análogos & derivados , Cloretos/química , Polietilenoglicóis/química , Polímeros/química , Boratos/química , Anidridos/química , PeptídeosRESUMO
ABC-type triblock copolymers are a rising platform especially for oligonucleotide delivery as they offer an additional functionality besides the anyhow needed functions of shielding and complexation. The authors present a polypept(o)ide-based triblock copolymer synthesized by amine-initiated ring-opening polymerization (ROP) of N-carboxyanhydrides (NCAs), comprising a shielding block A of polysarcosine (pSar), a poly(S-ethylsulfonyl-l-cystein) (pCys(SO2 Et)) block B for bioreversible and chemo-selective cross-linking and a poly(l-lysine) (pLys) block C for complexation to construct polyion complex (PIC) micelles as vehicle for small interfering RNA (siRNA) delivery. The self-assembly behavior of ABC-type triblocks is investigated to derive correlations between block lengths of the polymer and PIC micelle structure, showing an enormous effect of the ß-sheet forming pCys(SO2 Et) block. Moreover, the block enables the introduction of disulfide cross-links by reaction with multifunctional thiols to increase stability against dilution. The right content of the additional block leads to well-defined cross-linked 50-60 nm PIC micelles purified from production impurities and determinable siRNA loading. These PIC micelles can deliver functional siRNA into Neuro2A and KB cells evaluated by cellular uptake and specific gene knockdown assays.
Assuntos
Micelas , Polímeros , Dissulfetos/química , Humanos , Íons , Polímeros/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genéticaRESUMO
Achieving precise control over the morphology and function of polymeric nanostructures during self-assembly remains a challenge in materials as well as biomedical science, especially when independent control over particle properties is desired. Herein, we report on nanostructures derived from amphiphilic block copolypept(o)ides by secondary-structure-directed self-assembly, presenting a strategy to adjust core polarity and function separately from particle preparation in a bioreversible manner. The peptide-inherent process of secondary-structure formation allows for the synthesis of spherical and worm-like core-cross-linked architectures from the same block copolymer, introducing a simple yet powerful approach to versatile peptide-based core-shell nanostructures.
RESUMO
Nanocarrier-based drug delivery is a promising therapeutic approach that offers unique possibilities for the treatment of various diseases. However, inside the blood stream, nanocarriers' properties may change significantly due to interactions with proteins, aggregation, decomposition or premature loss of cargo. Thus, a method for precise, in situ characterization of drug nanocarriers in blood is needed. Here we show how the fluorescence correlation spectroscopy that is a well-established method for measuring the size, loading efficiency and stability of drug nanocarriers in aqueous solutions can be used to directly characterize drug nanocarriers in flowing blood. As the blood is not transparent for visible light and densely crowded with cells, we label the nanocarriers or their cargo with near-infrared fluorescent dyes and fit the experimental autocorrelation functions with an analytical model accounting for the presence of blood cells. The developed methodology contributes towards quantitative understanding of the in vivo behavior of nanocarrier-based therapeutics.