Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 551(7680): 373-377, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29059682

RESUMO

Locomotion is a universal behaviour that provides animals with the ability to move between places. Classical experiments have used electrical microstimulation to identify brain regions that promote locomotion, but the identity of neurons that act as key intermediaries between higher motor planning centres and executive circuits in the spinal cord has remained controversial. Here we show that the mouse caudal brainstem encompasses functionally heterogeneous neuronal subpopulations that have differential effects on locomotion. These subpopulations are distinguishable by location, neurotransmitter identity and connectivity. Notably, glutamatergic neurons within the lateral paragigantocellular nucleus (LPGi), a small subregion in the caudal brainstem, are essential to support high-speed locomotion, and can positively tune locomotor speed through inputs from glutamatergic neurons of the upstream midbrain locomotor region. By contrast, glycinergic inhibitory neurons can induce different forms of behavioural arrest mapping onto distinct caudal brainstem regions. Anatomically, descending pathways of glutamatergic and glycinergic LPGi subpopulations communicate with distinct effector circuits in the spinal cord. Our results reveal that behaviourally opposing locomotor functions in the caudal brainstem were historically masked by the unexposed diversity of intermingled neuronal subpopulations. We demonstrate how specific brainstem neuron populations represent essential substrates to implement key parameters in the execution of motor programs.


Assuntos
Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Locomoção/fisiologia , Vias Neurais , Aceleração , Animais , Ácido Glutâmico/metabolismo , Glicina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Optogenética
2.
Nature ; 508(7496): 351-6, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24487621

RESUMO

Translating the behavioural output of the nervous system into movement involves interaction between brain and spinal cord. The brainstem provides an essential bridge between the two structures, but circuit-level organization and function of this intermediary system remain poorly understood. Here we use intersectional virus tracing and genetic strategies in mice to reveal a selective synaptic connectivity matrix between brainstem substructures and functionally distinct spinal motor neurons that regulate limb movement. The brainstem nucleus medullary reticular formation ventral part (MdV) stands out as specifically targeting subpopulations of forelimb-innervating motor neurons. Its glutamatergic premotor neurons receive synaptic input from key upper motor centres and are recruited during motor tasks. Selective neuronal ablation or silencing experiments reveal that MdV is critically important specifically for skilled motor behaviour, including accelerating rotarod and single-food-pellet reaching tasks. Our results indicate that distinct premotor brainstem nuclei access spinal subcircuits to mediate task-specific aspects of motor programs.


Assuntos
Membro Anterior/inervação , Membro Anterior/fisiologia , Neurônios Motores/fisiologia , Destreza Motora/fisiologia , Movimento/fisiologia , Formação Reticular/anatomia & histologia , Formação Reticular/citologia , Animais , Feminino , Interneurônios/metabolismo , Masculino , Bulbo/anatomia & histologia , Bulbo/citologia , Camundongos , Teste de Desempenho do Rota-Rod , Medula Espinal/citologia , Sinapses/metabolismo
3.
Stem Cells ; 32(9): 2516-28, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24806549

RESUMO

Adult neurogenesis is a multistep process regulated by several extrinsic factors, including neurotrophins. Among them, little is known about the role of nerve growth factor (NGF) in the neurogenic niches of the mouse. Here we analyzed the biology of adult neural stem cells (NSCs) from the subventricular zone (SVZ) of AD11 anti-NGF transgenic mice, in which the expression of the recombinant antibody aD11 leads to a chronic postnatal neutralization of endogenous NGF. We showed that AD11-NSCs proliferate 10-fold less, with respect to their control counterparts, and display a significant impairment in their ability to differentiate into ß-tubulin positive neurons. We found a considerable reduction in the number of SVZ progenitors and neuroblasts also in vivo, which correlates with a lower number of newborn neurons in the olfactory bulbs of AD11 mice and a severe deficit in the ability of these mice to discriminate between different odors. We also demonstrated that, in AD11 mice, the morphology of both SVZ-resident and neurosphere-derived astrocytes is significantly altered. We were able to reproduce the AD11 phenotype in vitro, by acutely treating wild type NSCs with the anti-NGF antibody, further demonstrating that both the proliferation and the differentiation defects are due to the NGF deprivation. Consistently, the proliferative impairment of AD11 progenitors, as well as the atrophic morphology of AD11 astrocytes, can be partly rescued in vitro and in vivo by exogenous NGF addition. Altogether, our results demonstrate a causal link between NGF signaling and proper proliferation and differentiation of neural stem cells from the SVZ.


Assuntos
Ventrículos Laterais/metabolismo , Fator de Crescimento Neural/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Ventrículos Laterais/citologia , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Neurônios/citologia , Transdução de Sinais
4.
New Microbiol ; 33(3): 223-32, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20954440

RESUMO

Continuous surveillance on resistance patterns and characterization of Staphylococcus aureus represent simple and low-cost techniques to understand and evaluate the effectiveness of infection control and antimicrobial prescribing measures. In this study we analyzed the antibiotic susceptibility and trends for S. aureus strains collected from bacteraemia cases in a five year period. Between 2004 and 2008 we noted a progressive decrease in the number of S. aureus isolates compared to all pathogens from clinical specimens and S. aureus bloodstream infections (BSI) reflected a similar trend. In particular we analyzed 185 isolates from blood cultures: 89 isolates were MSSA and 96 isolates were MRSA. Molecular SCCmec typing of these strains showed an absolute prevalence of types I and II, whereas five spa types from 96 isolates were obtained. Resistance pattern analysis allowed us to place MRSA strains into 12 antibiotypes and the major antibiotype was resistant to penicillin, gentamicin, erythromycin, clindamycin and ciprofloxacin. The predominant antibiotype among the MSSA isolates was resistant only to penicillin. In addition, 19.1% of MSSA are susceptible to all antibiotics tested. We also found a close association between antibiotyping 1 and genotyping t002/SCCmecI of MRSA strains, suggesting a nosocomial scenario dominated by a few particular clones.


Assuntos
Infecção Hospitalar/microbiologia , Controle de Infecções/métodos , Testes de Sensibilidade Microbiana/métodos , Staphylococcus aureus/isolamento & purificação , Antibacterianos/farmacologia , Técnicas de Tipagem Bacteriana , Farmacorresistência Bacteriana Múltipla , Controle de Infecções/economia , Staphylococcus aureus Resistente à Meticilina/classificação , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Testes de Sensibilidade Microbiana/economia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/classificação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética
5.
Neuron ; 100(2): 361-374, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30359602

RESUMO

Locomotion is regulated by distributed circuits and achieved by the concerted activation of body musculature. While the basic properties of executive circuits in the spinal cord are fairly well understood, the precise mechanisms by which the brain impacts locomotion are much less clear. This Review discusses recent work unraveling the cellular identity, connectivity, and function of supraspinal circuits. We focus on their involvement in the regulation of the different phases of locomotion and their interaction with spinal circuits. Dedicated neuronal populations in the brainstem carry locomotor instructions, including initiation, speed, and termination. To align locomotion with behavioral needs, brainstem output structures are recruited by midbrain and forebrain circuits that compute and infer volitional, innate, and context-dependent locomotor properties. We conclude that the emerging logic of supraspinal circuit organization helps to understand how locomotor programs from exploration to hunting and escape are regulated by the brain.


Assuntos
Encéfalo/fisiologia , Locomoção/fisiologia , Vias Neurais/fisiologia , Medula Espinal/fisiologia , Animais , Humanos
6.
Nat Commun ; 8(1): 544, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916788

RESUMO

Breathing in mammals relies on permanent rhythmic and bilaterally synchronized contractions of inspiratory pump muscles. These motor drives emerge from interactions between critical sets of brainstem neurons whose origins and synaptic ordered organization remain obscure. Here, we show, using a virus-based transsynaptic tracing strategy from the diaphragm muscle in the mouse, that the principal inspiratory premotor neurons share V0 identity with, and are connected by, neurons of the preBötzinger complex that paces inspiration. Deleting the commissural projections of V0s results in left-right desynchronized inspiratory motor commands in reduced brain preparations and breathing at birth. This work reveals the existence of a core inspiratory circuit in which V0 to V0 synapses enabling function of the rhythm generator also direct its output to secure bilaterally coordinated contractions of inspiratory effector muscles required for efficient breathing.The developmental origin and functional organization of the brainstem breathing circuits are poorly understood. Here using virus-based circuit-mapping approaches in mice, the authors reveal the lineage, neurotransmitter phenotype, and connectivity patterns of phrenic premotor neurons, which are a crucial component of the inspiratory circuit.


Assuntos
Neurônios/fisiologia , Respiração , Animais , Tronco Encefálico/fisiologia , Camundongos , Periodicidade , Medula Espinal/fisiologia , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA