RESUMO
Using restriction fragment length polymorphisms (RFLPs) we show how host-plant genotype and hybridization in cotton wood, Populus sp., affects the attack and survival of the gall-forming aphid, Pemphigus betae. Fremont cottonwoods, hybrid ∗∗∗F1's and backcross ∗∗∗1's were found to be highly resistant, while backcross 2's, 3's, 4's and pure narrowleafs ranged from highly resistant to highly susceptible with only a few trees being highly resistant. Results from our genetic analysis also suggest that resistance is likely polygenic, not the result of single gene resistance. In addition, genetic analysis showed that studies based upon leaf morphology alone give an inaccurate assessment of host-plant genotype ∗∗∗and the extent of hybridization, altering previous views of the relationship between plant hybridization and pest attack. Previous studies assumed that narrowleafs were more resistant than backcross genotypes based upon comparisons of overall levels of resistance between the hybrid zone and the "pure" narrowleaf zone. Results from RFLP analyses, however, show that there are no significant differences in the levels of resistance between backcross genotypes (BC2's-4's) and pure narrowleafs. Furthermore, results show that the "pure" narrowleaf zone is in fact a mixture of pure and backcross genotypes, extending the zone of introgression previously reported. Experiments in combination with RFLP analyses suggest that resistance traits are differentially expressed along an environmental gradient partially explaining the previously reported differences in resistance between these two regions. In light of our results it is clear that genetic studies will be necessary to discern the true relationship between hybridization and pest resistance. Until such studies are widely conducted generalizations regarding the effects of hybridization on the structure and dynamics of pest populations will be premature at best.
RESUMO
In this study we examine the cytoplasmic inheritance patterns of an interspecific hybridizing population of Fremont and narrowleaf cottonwoods, using mitochondrial DNA. Three mitochondrial probes showing polymorphisms were used to distinguish between trees of known nuclear inheritance. Every tree screened had only one cytoplasmic genotype, either Fremont or narrowleaf. Thus, these results demonstrate that mitochondria are uniparentally inherited in these trees. Previous studies of the nuclear inheritance of this interspecific hybridizing population of cottonwood trees indicated an asymmetry in the frequency of parental genes. Using mitochondrial markers we tested one hypothesis potentially responsible for this asymmetric distribution (i.e., trees of mixed genotypes will be sterile or will not survive if their cytoplasm is derived from one or the other parent). Our results, however, show that both Fremont and narrowleaf mitochondrial markers are found in trees with mixed nuclear genotypes. Thus, nuclear-cytoplasmic incompatibilities do not appear to account for the asymmetric distribution of nuclear genotypes within the hybrid swarm. An alternative explanation for the observed asymmetric distribution of nuclear genotypes is advanced. Although nuclear-cytoplasmic incompatibilities do not appear to explain the asymmetric distribution of nuclear alleles within the hybrid zone, nonrandom associations between nuclear and cytoplasmic genotypes do exist. For example, all F1 hybrids had Fremont mitochondrial genotypes. Furthermore, backcrosses between F1 hybrid and narrowleaf trees have a higher than expected proportion of heterozygous loci and a higher than expected proportion of Fremont mitochondria. We propose that seeds, seedlings, or trees with high proportions of heterozygous loci are at a disadvantage unless they also have the Fremont mitochondrial genotype. While it is generally difficult to infer dynamic processes from static patterns, studies such as ours enable one to gain new insights to the dynamics of plant hybrid zones. A hybridization pattern of decreasingly complex backcrosses as one proceeds from higher to lower elevation within the hybrid swarm, a residue of Fremont cytoplasmic DNA within the pure narrowleaf population, and the unidirectional nature of these crosses suggest that the narrowleaf population may be spreading down the canyon and the Fremont population receding. The eventual fate of the hybrid zone, in relation to these processes, is discussed.