Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biochim Biophys Acta ; 1788(3): 724-31, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19109924

RESUMO

To better understand the incorporation of membrane proteins into discoidal nanolipoprotein particles (NLPs) we have used atomic force microscopy (AFM) to image and analyze NLPs assembled in the presence of bacteriorhodopsin (bR), lipoprotein E4 n-terminal 22k fragment scaffold and DMPC lipid. The self-assembly process produced two distinct NLP populations: those containing inserted bR (bR-NLPs) and those that did not (empty-NLPs). The bR-NLPs were distinguishable from empty-NLPs by an average increase in height of 1.0 nm as measured by AFM. Streptavidin binding to biotinylated bR confirmed that the original 1.0 nm height increase corresponds to br-NLP incorporation. AFM and ion mobility spectrometry (IMS) measurements suggest that NLP size did not vary around a single mean but instead there were several subpopulations, which were separated by discrete diameters. Interestingly, when bR was present during assembly the diameter distribution was shifted to larger particles and the larger particles had a greater likelihood of containing bR than smaller particles, suggesting that membrane proteins alter the mechanism of NLP assembly.


Assuntos
Bacteriorodopsinas/química , Lipoproteínas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Microscopia de Força Atômica , Nanoestruturas , Tamanho da Partícula , Espectrofotometria Ultravioleta
2.
Mol Cell Proteomics ; 7(11): 2246-53, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18603642

RESUMO

Here we demonstrate rapid production of solubilized and functional membrane protein by simultaneous cell-free expression of an apolipoprotein and a membrane protein in the presence of lipids, leading to the self-assembly of membrane protein-containing nanolipoprotein particles (NLPs). NLPs have shown great promise as a biotechnology platform for solubilizing and characterizing membrane proteins. However, current approaches are limited because they require extensive efforts to express, purify, and solubilize the membrane protein prior to insertion into NLPs. By the simple addition of a few constituents to cell-free extracts, we can produce membrane proteins in NLPs with considerably less effort. For this approach an integral membrane protein and an apolipoprotein scaffold are encoded by two DNA plasmids introduced into cell-free extracts along with lipids. For this study reported here we used plasmids encoding the bacteriorhodopsin (bR) membrane apoprotein and scaffold protein Delta1-49 apolipoprotein A-I fragment (Delta49A1). Cell free co-expression of the proteins encoded by these plasmids, in the presence of the cofactor all-trans-retinal and dimyristoylphosphatidylcholine, resulted in production of functional bR as demonstrated by a 5-nm shift in the absorption spectra upon light adaptation and characteristic time-resolved FT infrared difference spectra for the bR --> M transition. Importantly the functional bR was solubilized in discoidal bR.NLPs as determined by atomic force microscopy. A survey study of other membrane proteins co-expressed with Delta49A1 scaffold protein also showed significantly increased solubility of all of the membrane proteins, indicating that this approach may provide a general method for expressing membrane proteins enabling further studies.


Assuntos
Apolipoproteína A-I/química , Proteínas de Membrana/química , Apolipoproteína A-I/genética , Bacteriorodopsinas/química , Bacteriorodopsinas/genética , Sequência de Bases , Primers do DNA/genética , Halobacterium salinarum/genética , Proteínas de Membrana/genética , Microscopia de Força Atômica , Nanopartículas/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Proteômica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Methods Mol Biol ; 498: 273-96, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18988032

RESUMO

Membrane-associated proteins and protein complexes account for approximately a third or more of the proteins in the cell (1, 2). These complexes mediate essential cellular processes; including signal transduc-tion, transport, recognition, bioenergetics and cell-cell communication. In general, membrane proteins are challenging to study because of their insolubility and tendency to aggregate when removed from their protein lipid bilayer environment. This chapter is focused on describing a novel method for producing and solubilizing membrane proteins that can be easily adapted to high-throughput expression screening. This process is based on cell-free transcription and translation technology coupled with nanolipoprotein par ticles (NLPs), which are lipid bilayers confined within a ring of amphipathic protein of defined diameter. The NLPs act as a platform for inserting, solubilizing and characterizing functional membrane proteins. NLP component proteins (apolipoproteins), as well as membrane proteins can be produced by either traditional cell-based or as discussed here, cell-free expression methodologies.


Assuntos
Lipoproteínas/metabolismo , Proteínas de Membrana/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Animais , Biotinilação , Fracionamento Celular/métodos , Escherichia coli/genética , Lipoproteínas/química , Proteínas de Membrana/biossíntese , Proteínas de Membrana/metabolismo , Nanopartículas/química , Análise Serial de Proteínas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Solubilidade
4.
Int J Mol Sci ; 10(7): 2958-2971, 2009 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-19742178

RESUMO

Heterogeneity is a fact that plagues the characterization and application of many self-assembled biological constructs. The importance of obtaining particle homogeneity in biological assemblies is a critical goal, as bulk analysis tools often require identical species for reliable interpretation of the results-indeed, important tools of analysis such as x-ray diffraction typically require over 90% purity for effectiveness. This issue bears particular importance in the case of lipoproteins. Lipid-binding proteins known as apolipoproteins can self assemble with liposomes to form reconstituted high density lipoproteins (rHDLs) or nanolipoprotein particles (NLPs) when used for biotechnology applications such as the solubilization of membrane proteins. Typically, the apolipoprotein and phospholipids reactants are self assembled and even with careful assembly protocols the product often contains heterogeneous particles. In fact, size polydispersity in rHDLs and NLPs published in the literature are frequently observed, which may confound the accurate use of analytical methods. In this article, we demonstrate a procedure for producing a pure, monodisperse NLP subpopulation from a polydisperse self-assembly using size exclusion chromatography (SEC) coupled with high resolution particle imaging by atomic force microscopy (AFM). In addition, NLPs have been shown to self assemble both in the presence and absence of detergents such as cholate, yet the effects of cholate on NLP polydispersity and separation has not been systematically examined. Therefore, we examined the separation properties of NLPs assembled in both the absence and presence of cholate using SEC and native gel electrophoresis. From this analysis, NLPs prepared with and without cholate showed particles with well defined diameters spanning a similar size range. However, cholate was shown to have a dramatic affect on NLP separation by SEC and native gel electrophoresis. Furthermore, under conditions where different sized NLPs were not sufficiently separated or purified by SEC, AFM was used to deconvolute the elution pattern of different sized NLPs. From this analysis we were able to purify an NLP subpopulation to 90% size homogeneity by taking extremely fine elutions from the SEC. With this purity, we generate high quality NLP crystals that were over 100 microm in size with little precipitate, which could not be obtained utilizing the traditional size exclusion techniques. This purification procedure and the methods for validation are broadly applicable to other lipoprotein particles.


Assuntos
Lipoproteínas HDL/química , Nanopartículas/química , Colatos/química , Cromatografia em Gel , Bicamadas Lipídicas/química
5.
PLoS One ; 11(3): e0150166, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27015536

RESUMO

Yersinia pestis enters host cells and evades host defenses, in part, through interactions between Yersinia pestis proteins and host membranes. One such interaction is through the type III secretion system, which uses a highly conserved and ordered complex for Yersinia pestis outer membrane effector protein translocation called the injectisome. The portion of the injectisome that interacts directly with host cell membranes is referred to as the translocon. The translocon is believed to form a pore allowing effector molecules to enter host cells. To facilitate mechanistic studies of the translocon, we have developed a cell-free approach for expressing translocon pore proteins as a complex supported in a bilayer membrane mimetic nano-scaffold known as a nanolipoprotein particle (NLP) Initial results show cell-free expression of Yersinia pestis outer membrane proteins YopB and YopD was enhanced in the presence of liposomes. However, these complexes tended to aggregate and precipitate. With the addition of co-expressed (NLP) forming components, the YopB and/or YopD complex was rendered soluble, increasing the yield of protein for biophysical studies. Biophysical methods such as Atomic Force Microscopy and Fluorescence Correlation Spectroscopy were used to confirm that the soluble YopB/D complex was associated with NLPs. An interaction between the YopB/D complex and NLP was validated by immunoprecipitation. The YopB/D translocon complex embedded in a NLP provides a platform for protein interaction studies between pathogen and host proteins. These studies will help elucidate the poorly understood mechanism which enables this pathogen to inject effector proteins into host cells, thus evading host defenses.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Lipoproteínas/metabolismo , Nanopartículas/metabolismo , Proteínas da Membrana Bacteriana Externa/biossíntese , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Fenômenos Biofísicos , Regulação da Expressão Gênica , Lipoproteínas/química , Lipoproteínas/ultraestrutura , Microscopia de Força Atômica , Complexos Multiproteicos/ultraestrutura , Nanopartículas/química , Nanopartículas/ultraestrutura , Yersinia pestis/genética , Yersinia pestis/metabolismo
6.
Forensic Sci Int ; 240: 54-60, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24814329

RESUMO

Investigators of bioagent incidents or interdicted materials need validated, independent analytical methods that will allow them to distinguish between recently made bioagent samples versus material drawn from the archives of a historical program. Heterotrophic bacteria convert the carbon in their food sources, growth substrate or culture media, into the biomolecules they need. The F(14)C (fraction modern radiocarbon) of a variety of media, Bacillus spores, and separated proteins from Bacillus spores was measured by accelerator mass spectrometry (AMS). AMS precisely measures F(14)C values of biological materials and has been used to date the synthesis of biomaterials over the bomb pulse era (1955 to present). The F(14)C of Bacillus spores reflects the radiocarbon content of the media in which they were grown. In a survey of commercial media we found that the F(14)C value indicated that carbon sources for the media were alive within about a year of the date of manufacture and generally of terrestrial origin. Hence, bacteria and their products can be dated using their (14)C signature. Bacillus spore samples were generated onsite with defined media and carbon free purification and also obtained from archived material. Using mechanical lysis and a variety of washes with carbon free acids and bases, contaminant carbon was removed from soluble proteins to enable accurate (14)C bomb-pulse dating. Since media is contemporary, (14)C bomb-pulse dating of isolated soluble proteins can be used to distinguish between historical archives of bioagents and those produced from recent media.


Assuntos
Bacillus/química , Radioisótopos de Carbono/análise , Datação Radiométrica , Esporos Bacterianos/química , Espectrometria de Massas
7.
J Proteome Res ; 7(8): 3535-42, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18557639

RESUMO

We report a cell-free approach for expressing and inserting integral membrane proteins into water-soluble particles composed of discoidal apolipoprotein-lipid bilayers. Proteins are inserted into the particles, circumventing the need of extracting and reconstituting the product into membrane vesicles. Moreover, the planar nature of the membrane support makes the protein freely accessible from both sides of the lipid bilayer. Complexes are successfully purified by means of the apoplipoprotein component or by the carrier protein. The method significantly enhances the solubility of a variety of membrane proteins with different functional roles and topologies. Analytical assays for a subset of model membrane proteins indicate that proteins are correctly folded and active. The approach provides a platform amenable to high-throughput structural and functional characterization of a variety of traditionally intractable drug targets.


Assuntos
Bicamadas Lipídicas/química , Proteínas de Membrana/química , Antiporters/biossíntese , Antiporters/química , Antiporters/genética , Apolipoproteína A-I/biossíntese , Apolipoproteína A-I/química , Apolipoproteína A-I/genética , Apolipoproteína E4/biossíntese , Apolipoproteína E4/química , Apolipoproteína E4/genética , Bacteriorodopsinas/biossíntese , Bacteriorodopsinas/química , Bacteriorodopsinas/genética , Cromatografia em Gel , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Humanos , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Microscopia de Força Atômica , Solubilidade
8.
J Lipid Res ; 49(7): 1420-30, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18403317

RESUMO

Self-assembly of purified apolipoproteins and phospholipids results in the formation of nanometer-sized lipoprotein complexes, referred to as nanolipoprotein particles (NLPs). These bilayer constructs are fully soluble in aqueous environments and hold great promise as a model system to aid in solubilizing membrane proteins. Size variability in the self-assembly process has been recognized for some time, yet limited studies have been conducted to examine this phenomenon. Understanding the source of this heterogeneity may lead to methods to mitigate heterogeneity or to control NLP size, which may be important for tailoring NLPs for specific membrane proteins. Here, we have used atomic force microscopy, ion mobility spectrometry, and transmission electron microscopy to quantify NLP size distributions on the single-particle scale, specifically focusing on assemblies with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and a recombinant apolipoprotein E variant containing the N-terminal 22 kDa fragment (E422k). Four discrete sizes of E422k/DMPC NLPs were identified by all three techniques, with diameters centered at approximately 14.5, 19, 23.5, and 28 nm. Computer simulations suggest that these sizes are related to the structure and number of E422k lipoproteins surrounding the NLPs and particles with an odd number of lipoproteins are consistent with the double-belt model, in which at least one lipoprotein adopts a hairpin structure.


Assuntos
Lipoproteínas/química , Lipoproteínas/ultraestrutura , Nanopartículas/química , Nanopartículas/ultraestrutura , Biologia Computacional , Dimiristoilfosfatidilcolina/isolamento & purificação , Dimiristoilfosfatidilcolina/metabolismo , Eletroforese em Gel de Poliacrilamida , Lipoproteínas/isolamento & purificação , Lipoproteínas/metabolismo , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Dobramento de Proteína , Estrutura Terciária de Proteína
9.
J Am Chem Soc ; 129(46): 14348-54, 2007 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-17963384

RESUMO

Spontaneous interaction of purified apolipoproteins and phospholipids results in formation of lipoprotein particles with nanometer-sized dimensions; we refer to these assemblies as nanolipoprotein particles or NLPs. These bilayer constructs can serve as suitable mimetics of biological membranes and are fully soluble in aqueous environments. We made NLPs from dimyristoylphospatidylcholine (DMPC) in combination with each of four different apolipoproteins: apoA-I, Delta-apoA-I fragment, apoE4 fragment, and apolipophorin III (apoLp-III) from the silk moth B. mori. Predominately discoidal in shape, these particles have diameters between 10 and 20 nm, share uniform heights between 4.5 and 5 nm, and can be produced in yields ranging between 40 and 60%. The particular lipoprotein, the lipid to lipoprotein ratio, and the assembly parameters determine the size and homogeneity of nanolipoprotein particles and indicate that apoA-I NLP preparations are smaller than the larger apoE422K and apoLp-III NLP preparations.


Assuntos
Apolipoproteínas/química , Lipoproteínas/química , Mariposas/química , Nanopartículas/química , Fosfolipídeos/química , Animais , Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Apolipoproteína E4/química , Apolipoproteína E4/metabolismo , Apolipoproteínas/metabolismo , Cromatografia , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Eletroforese em Gel de Poliacrilamida , Lipoproteínas/metabolismo , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Mariposas/metabolismo , Nanopartículas/ultraestrutura , Tamanho da Partícula , Fosfolipídeos/metabolismo
10.
J Am Chem Soc ; 124(8): 1750-60, 2002 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-11853453

RESUMO

A cross-linked histidine-phenol compound was synthesized as a chemical analogue of the active site of cytochrome c oxidase. The structure of the cross-linked compound (compound 1) was verified by IR, (1)H and (13)C NMR, mass spectrometry, and single-crystal X-ray analysis. Spectrophotometric titrations indicated that the pK(a) of the phenolic proton on compound 1 (8.34) was lower than the pK(a) of tyrosine (10.1) or of p-cresol (10.2). This decrease in pK(a) is consistent with the hypothesis that a cross-linked histidine-tyrosine may facilitate proton delivery to the binuclear site in cytochrome c oxidase. Time-resolved optical absorption spectra of compound 1 at room temperature, generated by excitation at 266 nm in the presence and absence of dioxygen, indicated a species with absorption maxima at approximately 330 and approximately 500 nm, which we assign to the phenoxyl radical of compound 1. The electron paramagnetic resonance (EPR) spectra of compound 1, obtained after UV photolysis, confirmed the generation of a paramagnetic species at low temperature. Because the cross-linked compound lacks beta-methylene protons, the EPR line shape was dramatically altered when compared to that of the tyrosyl radical. However, simulation of the EPR line shape and measurement of the isotropic g value was consistent with a small coupling to the imidazole nitrogen and with little spin density perturbation in the phenoxyl ring. The ground-state Fourier transform infrared (FT-IR) spectrum of compound 1 showed that addition of the imidazole ring perturbs the frequency of the tyrosine ring stretching vibrations. The difference FT-IR spectrum, associated with the oxidation of the cross-linked compound, detected significant perturbations of the phenoxyl radical vibrational bands. We postulate that phenol oxidation produces a small delocalization of spin density onto the imidazole nitrogen of compound 1, which may explain its unique optical spectral properties.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Histidina/química , Fenóis/química , Sítios de Ligação , Cristalografia por Raios X , Dipeptídeos/química , Espectroscopia de Ressonância de Spin Eletrônica , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Modelos Químicos , Fenóis/síntese química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA