Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38793983

RESUMO

Over the past few decades, Information and Communication Technologies (ICT) have revolutionized the fields of nursing and patient healthcare management. This scoping review and the accompanying case studies shed light on the extensive scope and impact of ICT in these critical healthcare domains. The scoping review explores the wide array of ICT tools employed in nursing care and patient healthcare management. These tools encompass electronic health records systems, mobile applications, telemedicine solutions, remote monitoring systems, and more. This article underscores how these technologies have enhanced the efficiency, accuracy, and accessibility of clinical information, contributing to improved patient care. ICT revolution has revitalized nursing care and patient management, improving the quality of care and patient satisfaction. This review and the accompanying case studies emphasize the ongoing potential of ICT in the healthcare sector and call for further research to maximize its benefits.


Assuntos
Registros Eletrônicos de Saúde , Telemedicina , Humanos , Atenção à Saúde , Aplicativos Móveis , Cuidados de Enfermagem , Satisfação do Paciente
2.
Sensors (Basel) ; 23(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36991660

RESUMO

Visible light communications (VLC) is a technology that enables the transmission of digital information with a light source. VLC is nowadays seen as a promising technology for indoor applications, helping WiFi to handle the spectrum crunch. Possible indoor applications range from Internet connection at home/office to multimedia content delivery in a museum. Despite the vast interest of researchers in both theoretical analysis and experimentation on VLC technology, no studies have been carried out on the human perceptions of objects illuminated by VLC-based lamps. It is important to define if a VLC lamp decreases the reading capability or modifies the color perception in order to make VLC a technology appropriate for everyday life use. This paper describes the results of psychophysical tests on humans to define if VLC lamps modify the perception of colors or the reading speed. The results of the reading speed test showed a 0.97 correlation coefficient between tests with and without VLC modulated light, leading us to conclude that there is no difference in the reading speed capability with and without VLC-modulated light. The results of the color perception test showed a Fisher exact test p-value of 0.2351, showing that the perception of color is not influenced by the presence of the VLC modulated light.

3.
Sensors (Basel) ; 22(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36433215

RESUMO

In this paper, we present very recent results regarding the latency characterization of a novel bidirectional visible light communication (VLC) system for vehicular applications, which could be relevant in intelligent transportation system (ITS) safety applications, such as the assisted and automated braking of cars and motorbikes in critical situations. The VLC system has been implemented using real motorbike head- and tail-lights with distances up to 27 m in a realistic outdoor scenario. We performed a detailed statistical analysis of the observed error distribution in the communication process, assessing the most probable statistical values of expected latency depending on the observed packet error rate (PER). A minimum attainable observed round-trip latency of 2.5 ms was measured. Using our dataset, we have also estimated the probability to receive correctly a message with a specific average latency for a target PER, and we compare it to the ultra-reliable low-latency (URLL) 5G communications service. In addition, a mobility model is implemented to compare the VLC and radio frequency (RF) technologies (IEEE802.11p, LTE, 5G) to support an automated braking systems for vehicles in urban platooning.

4.
Sensors (Basel) ; 23(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36616785

RESUMO

In the current Information Age, it is usual to access our personal and professional information, such as bank account data or private documents, in a telematic manner. To ensure the privacy of this information, user authentication systems should be accurately developed. In this work, we focus on biometric authentication, as it depends on the user's inherent characteristics and, therefore, offers personalized authentication systems. Specifically, we propose an electrocardiogram (EEG)-based user authentication system by employing One-Class and Multi-Class Machine Learning classifiers. In this sense, the main novelty of this article is the introduction of Isolation Forest and Local Outlier Factor classifiers as new tools for user authentication and the investigation of their suitability with EEG data. Additionally, we identify the EEG channels and brainwaves with greater contribution to the authentication and compare them with the traditional dimensionality reduction techniques, Principal Component Analysis, and χ2 statistical test. In our final proposal, we elaborate on a hybrid system resistant to random forgery attacks using an Isolation Forest and a Random Forest classifiers, obtaining a final accuracy of 82.3%, a precision of 91.1% and a recall of 75.3%.


Assuntos
Identificação Biométrica , Ondas Encefálicas , Identificação Biométrica/métodos , Aprendizado de Máquina , Privacidade , Eletrocardiografia , Segurança Computacional
5.
Sensors (Basel) ; 21(9)2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063222

RESUMO

In this paper, we propose an unobtrusive method and architecture for monitoring a person's presence and collecting his/her health-related parameters simultaneously in a home environment. The system is based on using a single ultra-wideband (UWB) impulse-radar as a sensing device. Using UWB radars, we aim to recognize a person and some preselected movements without camera-type monitoring. Via the experimental work, we have also demonstrated that, by using a UWB signal, it is possible to detect small chest movements remotely to recognize coughing, for example. In addition, based on statistical data analysis, a person's posture in a room can be recognized in a steady situation. In addition, we implemented a machine learning technique (k-nearest neighbour) to automatically classify a static posture using UWB radar data. Skewness, kurtosis and received power are used in posture classification during the postprocessing. The classification accuracy achieved is more than 99%. In this paper, we also present reliability and fault tolerance analyses for three kinds of UWB radar network architectures to point out the weakest item in the installation. This information is highly important in the system's implementation.


Assuntos
Radar , Processamento de Sinais Assistido por Computador , Idoso , Feminino , Humanos , Masculino , Monitorização Fisiológica , Postura , Reprodutibilidade dos Testes , Respiração
6.
Sensors (Basel) ; 21(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557140

RESUMO

Residual motion of upper limbs in individuals who experienced cervical spinal cord injury (CSCI) is vital to achieve functional independence. Several interventions were developed to restore shoulder range of motion (ROM) in CSCI patients. However, shoulder ROM assessment in clinical practice is commonly limited to use of a simple goniometer. Conventional goniometric measurements are operator-dependent and require significant time and effort. Therefore, innovative technology for supporting medical personnel in objectively and reliably measuring the efficacy of treatments for shoulder ROM in CSCI patients would be extremely desirable. This study evaluated the validity of a customized wireless wearable sensors (Inertial Measurement Units-IMUs) system for shoulder ROM assessment in CSCI patients in clinical setting. Eight CSCI patients and eight healthy controls performed four shoulder movements (forward flexion, abduction, and internal and external rotation) with dominant arm. Every movement was evaluated with a goniometer by different testers and with the IMU system at the same time. Validity was evaluated by comparing IMUs and goniometer measurements using Intraclass Correlation Coefficient (ICC) and Limits of Agreement (LOA). inter-tester reliability of IMUs and goniometer measurements was also investigated. Preliminary results provide essential information on the accuracy of the proposed wireless wearable sensors system in acquiring objective measurements of the shoulder movements in CSCI patients.


Assuntos
Medula Cervical , Ombro , Humanos , Projetos Piloto , Amplitude de Movimento Articular , Reprodutibilidade dos Testes
7.
Sensors (Basel) ; 18(9)2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30189591

RESUMO

An innovative wireless sensor network (WSN) based on Ultra-Wide Band (UWB) technology for 3D accurate superficial monitoring of ground deformations, as landslides and subsidence, is proposed. The system has been designed and developed as part of an European Life+ project, called Wi-GIM (Wireless Sensor Network for Ground Instability Monitoring). The details of the architecture, the localization via wireless technology and data processing protocols are described. The flexibility and accuracy achieved by the UWB two-way ranging technique is analysed and compared with the traditional systems, such as robotic total stations (RTSs) and Ground-based Interferometric Synthetic Aperture Radar (GB-InSAR), highlighting the pros and cons of the UWB solution to detect the surface movements. An extensive field trial campaign allows the validation of the system and the analysis of its sensitivity to different factors (e.g., sensor nodes inter-visibility, effects of the temperature, etc.). The Wi-GIM system represents a promising solution for landslide monitoring and it can be adopted in combination with traditional systems or as an alternative in areas where the available resources are inadequate. The versatility, easy/fast deployment and cost-effectiveness, together with good accuracy, make the Wi-GIM system a possible solution for municipalities that cannot afford expensive/complex systems to monitor potential landslides in their territory.

8.
J Signal Process Syst ; 95(4): 435-457, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36748044

RESUMO

6G networks have the burden to provide not only higher performance compared to 5G, but also to enable new service domains as well as to open the door over a new paradigm of mobile communication. This paper presents an overview on the role and key challenges of signal processing (SP) in future 6G systems and networks from the conditioning of the signal at transmission to MIMO precoding and detection, from channel coding to channel estimation, from multicarrier and non-orthogonal multiple access (NOMA) to optical wireless communications and physical layer security (PLS). We describe also the core future research challenges on technologies including machine learning based 6G design, integrated communications and sensing (ISAC), and the internet of bio-nano-things.

9.
J Chem Theory Comput ; 17(3): 1755-1770, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33577311

RESUMO

In the present study, we propose, validate, and give first applications for large-scale systems of coarse-grained models suitable for filler/polymer interfaces based on carbon black (CB) and polyethylene (PE). The computational efficiency of the proposed approach, based on hybrid particle-field models (hPF), allows large-scale simulations of CB primary particles of realistic size (∼20 nm) embedded in PE melts. The molecular detailed models, here introduced, allow a microscopic description of the bound layer, through the analysis of the conformational behavior of PE chains adsorbed on different surface sites of CB primary particles, where the conformational behavior of adsorbed chains is different from models based on flat infinite surfaces. On the basis of the features of the systems, an optimized version of OCCAM code for large-scale (up to more than 8 million of beads) parallel runs is proposed and benchmarked. The computational efficiency of the proposed approach opens the possibility of a computational screening of the bound layer, involving the optimal combination of surface chemistry, size, and shape of CB aggregates and the molecular weight distribution of the polymers achieving an important tool to address the polymer/fillers interface and interphase engineering in the polymer industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA