Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell ; 177(7): 1701-1713.e16, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31155232

RESUMO

Over the last decade, various new therapies have been developed to promote anti-tumor immunity. Despite interesting clinical results in hematological malignancies, the development of bispecific killer-cell-engager antibody formats directed against tumor cells and stimulating anti-tumor T cell immunity has proved challenging, mostly due to toxicity problems. We report here the generation of trifunctional natural killer (NK) cell engagers (NKCEs), targeting two activating receptors, NKp46 and CD16, on NK cells and a tumor antigen on cancer cells. Trifunctional NKCEs were more potent in vitro than clinical therapeutic antibodies targeting the same tumor antigen. They had similar in vivo pharmacokinetics to full IgG antibodies and no off-target effects and efficiently controlled tumor growth in mouse models of solid and invasive tumors. Trifunctional NKCEs thus constitute a new generation of molecules for fighting cancer. VIDEO ABSTRACT.


Assuntos
Anticorpos Biespecíficos , Antígenos Ly/imunologia , Antineoplásicos Imunológicos , Citotoxicidade Imunológica/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Receptor 1 Desencadeador da Citotoxicidade Natural/imunologia , Neoplasias Experimentais , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/farmacologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Células Matadoras Naturais/patologia , Camundongos , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia
2.
Exp Dermatol ; 28(4): 503-508, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-28603898

RESUMO

While every jawed vertebrate, or its recent ancestor, possesses teeth, skin appendages are characteristic of the living clades: skin denticles (odontodes) in chondrichthyans, dermal scales in teleosts, ducted multicellular glands in amphibians, epidermal scales in squamates, feathers in birds and hair-gland complexes in mammals, all of them showing a dense periodic patterning. While the odontode origin of teleost scales is generally accepted, the origin of both feather and hair is still debated. They appear long before mammals and birds, at least in the Jurassic in mammaliaforms and in ornithodires (pterosaurs and dinosaurs), and are contemporary to scales of early squamates. Epidermal scales might have appeared several times in evolution, and basal amniotes could not have developed a scaled dry integument, as the function of hair follicle requires its association with glands. In areas such as amnion, cornea or plantar pads, the formation of feather and hair is prevented early in embryogenesis, but can be easily reverted by playing with the Wnt/BMP/Shh pathways, which both imply the plasticity and the default competence of ectoderm. Conserved ectodermal/mesenchymal signalling pathways lead to placode formation, while later the crosstalk differs, as well as the final performing tissue(s): both epidermis and dermis for teeth and odontodes, mostly dermis for teleosts scales and only epidermis for squamate scale, feather and hair. We therefore suggest that tooth, dermal scale, epidermal scale, feather and hair evolved in parallel from a shared placode/dermal cell unit, which was present in a common ancestor, an early vertebrate gnathostome with odontodes, ca. 420 million years ago.


Assuntos
Escamas de Animais/embriologia , Evolução Biológica , Plumas/embriologia , Fósseis , Cabelo/embriologia , Adaptação Fisiológica , Animais
4.
Comput Math Methods Med ; 2016: 7851789, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28096895

RESUMO

The design of a patient-specific virtual tumour is an important step towards Personalized Medicine. However this requires to capture the description of many key events of tumour development, including angiogenesis, matrix remodelling, hypoxia, and cell state heterogeneity that will all influence the tumour growth kinetics and degree of tumour invasiveness. To that end, an integrated hybrid and multiscale approach has been developed based on data acquired on a preclinical mouse model as a proof of concept. Fluorescence imaging is exploited to build case-specific virtual tumours. Numerical simulations show that the virtual tumour matches the characteristics and spatiotemporal evolution of its real counterpart. We achieved this by combining image analysis and physiological modelling to accurately described the evolution of different tumour cases over a month. The development of such models is essential since a dedicated virtual tumour would be the perfect tool to identify the optimum therapeutic strategies that would make Personalized Medicine truly reachable and achievable.


Assuntos
Neoplasias/diagnóstico por imagem , Neoplasias/fisiopatologia , Neovascularização Patológica , Medicina de Precisão/métodos , Animais , Ciclo Celular , Divisão Celular , Linhagem Celular Tumoral , Proliferação de Células , Simulação por Computador , Modelos Animais de Doenças , Orelha/fisiopatologia , Matriz Extracelular/metabolismo , Feminino , Proteínas de Fluorescência Verde/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Cinética , Camundongos , Camundongos Nus , Modelos Biológicos , Invasividade Neoplásica , Oxigênio/química
6.
ACS Appl Mater Interfaces ; 8(38): 25051-9, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27598554

RESUMO

A hyaluronic acid (HA)-based extracellular matrix (ECM) platform with independently tunable stiffness and density of cell-adhesive peptide (RGD, arginine-glycine-aspartic acid) that mimics key biochemical and mechanical features of brain matrix has been designed. We demonstrated here its utility in elucidating ECM regulation of neural progenitor cell behavior and neurite outgrowth. The analysis of neurite outgrowth in 3-D by two-photon microscopy showed several important results in the development of these hydrogels. First, the ability of neurites to extend deeply into these soft HA-based matrices even in the absence of cell-adhesive ligand further confirms the potential of HA hydrogels for central nervous system (CNS) regeneration. Second, the behavior of hippocampal neural progenitor cells differed markedly between the hydrogels with a storage modulus of 400 Pa and those with a modulus of 800 Pa. We observed an increased outgrowth and density of neurites in the softest hydrogels (G' = 400 Pa). Interestingly, cells seeded on the surface of the hydrogels functionalized with the RGD ligand experienced an optimum in neurite outgrowth as a function of ligand density. Surprinsingly, neurites preferentially progressed inside the gels in a vertical direction, suggesting that outgrowth is directed by the hydrogel structure. This work may provide design principles for the development of hydrogels to facilitate neuronal regeneration in the adult brain.


Assuntos
Ácido Hialurônico/química , Matriz Extracelular , Hidrogéis , Neuritos , Crescimento Neuronal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA