Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Brief Bioinform ; 20(4): 1358-1375, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-29390045

RESUMO

Alternative splicing (AS) has shown to play a pivotal role in the development of diseases, including cancer. Specifically, all the hallmarks of cancer (angiogenesis, cell immortality, avoiding immune system response, etc.) are found to have a counterpart in aberrant splicing of key genes. Identifying the context-specific regulators of splicing provides valuable information to find new biomarkers, as well as to define alternative therapeutic strategies. The computational models to identify these regulators are not trivial and require three conceptual steps: the detection of AS events, the identification of splicing factors that potentially regulate these events and the contextualization of these pieces of information for a specific experiment. In this work, we review the different algorithmic methodologies developed for each of these tasks. Main weaknesses and strengths of the different steps of the pipeline are discussed. Finally, a case study is detailed to help the reader be aware of the potential and limitations of this computational approach.


Assuntos
Processamento Alternativo , Fatores de Processamento de RNA/metabolismo , Células A549 , Algoritmos , Processamento Alternativo/genética , Motivos de Aminoácidos , Sítios de Ligação/genética , Biologia Computacional , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Humanos , Modelos Genéticos , RNA/genética , RNA/metabolismo , Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/genética , Fatores de Processamento de Serina-Arginina/antagonistas & inibidores , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo
2.
BMC Genomics ; 20(1): 521, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31238884

RESUMO

BACKGROUND: Splicing is a genetic process that has important implications in several diseases including cancer. Deciphering the complex rules of splicing regulation is crucial to understand and treat splicing-related diseases. Splicing factors and other RNA-binding proteins (RBPs) play a key role in the regulation of splicing. The specific binding sites of an RBP can be measured using CLIP experiments. However, to unveil which RBPs regulate a condition, it is necessary to have a priori hypotheses, as a single CLIP experiment targets a single protein. RESULTS: In this work, we present a novel methodology to predict context-specific splicing factors from transcriptomic data. For this, we systematically collect, integrate and analyze more than 900 CLIP experiments stored in four CLIP databases: POSTAR2, CLIPdb, DoRiNA and StarBase. The analysis of these experiments shows the strong coherence between the binding sites of RBPs of similar families. Augmenting this information with expression changes, we are able to correctly predict the splicing factors that regulate splicing in two gold-standard experiments in which specific splicing factors are knocked-down. CONCLUSIONS: The methodology presented in this study allows the prediction of active splicing factors in either cancer or any other condition by only using the information of transcript expression. This approach opens a wide range of possible studies to understand the splicing regulation of different conditions. A tutorial with the source code and databases is available at https://gitlab.com/fcarazo.m/sfprediction .


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica , Imunoprecipitação , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Fatores de Processamento de RNA/química
3.
BMC Genomics ; 19(1): 703, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30253752

RESUMO

BACKGROUND: RNA-seq is a reference technology for determining alternative splicing at genome-wide level. Exon arrays remain widely used for the analysis of gene expression, but show poor validation rate with regard to splicing events. Commercial arrays that include probes within exon junctions have been developed in order to overcome this problem. We compare the performance of RNA-seq (Illumina HiSeq) and junction arrays (Affymetrix Human Transcriptome array) for the analysis of transcript splicing events. Three different breast cancer cell lines were treated with CX-4945, a drug that severely affects splicing. To enable a direct comparison of the two platforms, we adapted EventPointer, an algorithm that detects and labels alternative splicing events using junction arrays, to work also on RNA-seq data. Common results and discrepancies between the technologies were validated and/or resolved by over 200 PCR experiments. RESULTS: As might be expected, RNA-seq appears superior in cases where the technologies disagree and is able to discover novel splicing events beyond the limitations of physical probe-sets. We observe a high degree of coherence between the two technologies, however, with correlation of EventPointer results over 0.90. Through decimation, the detection power of the junction arrays is equivalent to RNA-seq with up to 60 million reads. CONCLUSIONS: Our results suggest, therefore, that exon-junction arrays are a viable alternative to RNA-seq for detection of alternative splicing events when focusing on well-described transcriptional regions.


Assuntos
Algoritmos , Processamento Alternativo , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de RNA , Linhagem Celular Tumoral , Humanos , Reação em Cadeia da Polimerase
4.
Front Immunol ; 13: 977358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248800

RESUMO

Artificial intelligence (AI) can unveil novel personalized treatments based on drug screening and whole-exome sequencing experiments (WES). However, the concept of "black box" in AI limits the potential of this approach to be translated into the clinical practice. In contrast, explainable AI (XAI) focuses on making AI results understandable to humans. Here, we present a novel XAI method -called multi-dimensional module optimization (MOM)- that associates drug screening with genetic events, while guaranteeing that predictions are interpretable and robust. We applied MOM to an acute myeloid leukemia (AML) cohort of 319 ex-vivo tumor samples with 122 screened drugs and WES. MOM returned a therapeutic strategy based on the FLT3, CBFß-MYH11, and NRAS status, which predicted AML patient response to Quizartinib, Trametinib, Selumetinib, and Crizotinib. We successfully validated the results in three different large-scale screening experiments. We believe that XAI will help healthcare providers and drug regulators better understand AI medical decisions.


Assuntos
Inteligência Artificial , Leucemia Mieloide Aguda , Crizotinibe/uso terapêutico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Medicina de Precisão/métodos
5.
Cancers (Basel) ; 14(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35805023

RESUMO

Recent functional genomic screens­such as CRISPR-Cas9 or RNAi screening­have fostered a new wave of targeted treatments based on the concept of synthetic lethality. These approaches identified LEthal Dependencies (LEDs) by estimating the effect of genetic events on cell viability. The multiple-hypothesis problem is related to a large number of gene knockouts limiting the statistical power of these studies. Here, we show that predictions of LEDs from functional screens can be dramatically improved by incorporating the "HUb effect in Genetic Essentiality" (HUGE) of gene alterations. We analyze three recent genome-wide loss-of-function screens­Project Score, CERES score and DEMETER score­identifying LEDs with 75 times larger statistical power than using state-of-the-art methods. Using acute myeloid leukemia, breast cancer, lung adenocarcinoma and colon adenocarcinoma as disease models, we validate that our predictions are enriched in a recent harmonized knowledge base of clinical interpretations of somatic genomic variants in cancer (AUROC > 0.87). Our approach is effective even in tumors with large genetic heterogeneity such as acute myeloid leukemia, where we identified LEDs not recalled by previous pipelines, including FLT3-mutant genotypes sensitive to FLT3 inhibitors. Interestingly, in-vitro validations confirm lethal dependencies of either NRAS or PTPN11 depending on the NRAS mutational status. HUGE will hopefully help discover novel genetic dependencies amenable for precision-targeted therapies in cancer. All the graphs showing lethal dependencies for the 19 tumor types analyzed can be visualized in an interactive tool.

6.
NAR Genom Bioinform ; 4(3): lqac067, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36128425

RESUMO

Alternative splicing (AS) plays a key role in cancer: all its hallmarks have been associated with different mechanisms of abnormal AS. The improvement of the human transcriptome annotation and the availability of fast and accurate software to estimate isoform concentrations has boosted the analysis of transcriptome profiling from RNA-seq. The statistical analysis of AS is a challenging problem not yet fully solved. We have included in EventPointer (EP), a Bioconductor package, a novel statistical method that can use the bootstrap of the pseudoaligners. We compared it with other state-of-the-art algorithms to analyze AS. Its performance is outstanding for shallow sequencing conditions. The statistical framework is very flexible since it is based on design and contrast matrices. EP now includes a convenient tool to find the primers to validate the discoveries using PCR. We also added a statistical module to study alteration in protein domain related to AS. Applying it to 9514 patients from TCGA and TARGET in 19 different tumor types resulted in two conclusions: i) aberrant alternative splicing alters the relative presence of Protein domains and, ii) the number of enriched domains is strongly correlated with the age of the patients.

7.
Cancers (Basel) ; 14(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35205666

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers mainly due to spatial obstacles to complete resection, early metastasis and therapy resistance. The molecular events accompanying PDAC progression remain poorly understood. SOX9 is required for maintaining the pancreatic ductal identity and it is involved in the initiation of pancreatic cancer. In addition, SOX9 is a transcription factor linked to stem cell activity and is commonly overexpressed in solid cancers. It cooperates with Snail/Slug to induce epithelial-mesenchymal transition (EMT) during neural development and in diseases such as organ fibrosis or different types of cancer. METHODS: We investigated the roles of SOX9 in pancreatic tumor cell plasticity, metastatic dissemination and chemoresistance using pancreatic cancer cell lines as well as mouse embryo fibroblasts. In addition, we characterized the clinical relevance of SOX9 in pancreatic cancer using human biopsies. RESULTS: Gain- and loss-of-function of SOX9 in PDAC cells revealed that high levels of SOX9 increased migration and invasion, and promoted EMT and metastatic dissemination, whilst SOX9 silencing resulted in metastasis inhibition, along with a phenotypic reversion to epithelial features and loss of stemness potential. In both contexts, EMT factors were not altered. Moreover, high levels of SOX9 promoted resistance to gemcitabine. In contrast, overexpression of SOX9 was sufficient to promote metastatic potential in K-Ras transformed MEFs, triggering EMT associated with Snail/Slug activity. In clinical samples, SOX9 expression was analyzed in 198 PDAC cases by immunohistochemistry and in 53 patient derived xenografts (PDXs). SOX9 was overexpressed in primary adenocarcinomas and particularly in metastases. Notably, SOX9 expression correlated with high vimentin and low E-cadherin expression. CONCLUSIONS: Our results indicate that SOX9 facilitates PDAC progression and metastasis by triggering stemness and EMT.

8.
Sci Rep ; 10(1): 1069, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974522

RESUMO

The advent of RNA-seq technologies has switched the paradigm of genetic analysis from a genome to a transcriptome-based perspective. Alternative splicing generates functional diversity in genes, but the precise functions of many individual isoforms are yet to be elucidated. Gene Ontology was developed to annotate gene products according to their biological processes, molecular functions and cellular components. Despite a single gene may have several gene products, most annotations are not isoform-specific and do not distinguish the functions of the different proteins originated from a single gene. Several approaches have tried to automatically annotate ontologies at the isoform level, but this has shown to be a daunting task. We have developed ISOGO (ISOform + GO function imputation), a novel algorithm to predict the function of coding isoforms based on their protein domains and their correlation of expression along 11,373 cancer patients. Combining these two sources of information outperforms previous approaches: it provides an area under precision-recall curve (AUPRC) five times larger than previous attempts and the median AUROC of assigned functions to genes is 0.82. We tested ISOGO predictions on some genes with isoform-specific functions (BRCA1, MADD,VAMP7 and ITSN1) and they were coherent with the literature. Besides, we examined whether the main isoform of each gene -as predicted by APPRIS- was the most likely to have the annotated gene functions and it occurs in 99.4% of the genes. We also evaluated the predictions for isoform-specific functions provided by the CAFA3 challenge and results were also convincing. To make these results available to the scientific community, we have deployed a web application to consult ISOGO predictions (https://biotecnun.unav.es/app/isogo). Initial data, website link, isoform-specific GO function predictions and R code is available at https://gitlab.com/icassol/isogo.


Assuntos
Algoritmos , Anotação de Sequência Molecular/métodos , Isoformas de Proteínas/genética , Processamento Alternativo , Ontologia Genética , Humanos , Fases de Leitura Aberta
9.
Cancers (Basel) ; 12(7)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645997

RESUMO

The development of predictive biomarkers of response to targeted therapies is an unmet clinical need for many antitumoral agents. Recent genome-wide loss-of-function screens, such as RNA interference (RNAi) and CRISPR-Cas9 libraries, are an unprecedented resource to identify novel drug targets, reposition drugs and associate predictive biomarkers in the context of precision oncology. In this work, we have developed and validated a large-scale bioinformatics tool named DrugSniper, which exploits loss-of-function experiments to model the sensitivity of 6237 inhibitors and predict their corresponding biomarkers of sensitivity in 30 tumor types. Applying DrugSniper to small cell lung cancer (SCLC), we identified genes extensively explored in SCLC, such as Aurora kinases or epigenetic agents. Interestingly, the analysis suggested a remarkable vulnerability to polo-like kinase 1 (PLK1) inhibition in CREBBP-mutant SCLC cells. We validated this association in vitro using four mutated and four wild-type SCLC cell lines and two PLK1 inhibitors (Volasertib and BI2536), confirming that the effect of PLK1 inhibitors depended on the mutational status of CREBBP. Besides, DrugSniper was validated in-silico with several known clinically-used treatments, including the sensitivity of Tyrosine Kinase Inhibitors (TKIs) and Vemurafenib to FLT3 and BRAF mutant cells, respectively. These findings show the potential of genome-wide loss-of-function screens to identify new personalized therapeutic hypotheses in SCLC and potentially in other tumors, which is a valuable starting point for further drug development and drug repositioning projects.

10.
Gigascience ; 8(4)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30942869

RESUMO

BACKGROUND: Aberrant alternative splicing plays a key role in cancer development. In recent years, alternative splicing has been used as a prognosis biomarker, a therapy response biomarker, and even as a therapeutic target. Next-generation RNA sequencing has an unprecedented potential to measure the transcriptome. However, due to the complexity of dealing with isoforms, the scientific community has not sufficiently exploited this valuable resource in precision medicine. FINDINGS: We present TranscriptAchilles, the first large-scale tool to predict transcript biomarkers associated with gene essentiality in cancer. This application integrates 412 loss-of-function RNA interference screens of >17,000 genes, together with their corresponding whole-transcriptome expression profiling. Using this tool, we have studied which are the cancer subtypes for which alternative splicing plays a significant role to state gene essentiality. In addition, we include a case study of renal cell carcinoma that shows the biological soundness of the results. The databases, the source code, and a guide to build the platform within a Docker container are available at GitLab. The application is also available online. CONCLUSIONS: TranscriptAchilles provides a user-friendly web interface to identify transcript or gene biomarkers of gene essentiality, which could be used as a starting point for a drug development project. This approach opens a wide range of translational applications in cancer.


Assuntos
Processamento Alternativo , Biomarcadores Tumorais , Biologia Computacional/métodos , Estudo de Associação Genômica Ampla/métodos , Neoplasias/genética , Oncogenes , Software , Algoritmos , Perfilação da Expressão Gênica , Humanos , Modelos Estatísticos , Isoformas de RNA , Transcriptoma , Interface Usuário-Computador , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA