Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Inorg Chem ; 62(26): 10100-10109, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37319404

RESUMO

Hydrogenolysis of a series of alkyl sulfido-bridged tantalum(IV) dinuclear complexes [Ta(η5-C5Me5)R(µ-S)]2 [R = Me, nBu (1), Et, CH2SiMe3, C3H5, Ph, CH2Ph (2), p-MeC6H4CH2 (3)] has led quantitatively to the Ta(III) tetrametallic sulfide cluster [Ta(η5-C5Me5)(µ3-S)]4 (4) along with the corresponding alkane. Mechanistic information for the formation of the unique low-valent tetrametallic compound 4 was gathered by hydrogenation of the phenyl-substituted precursor [Ta(η5-C5Me5)Ph(µ-S)]2, which proceeds through a stepwise hydrogenation process, disclosing the formation of the intermediate tetranuclear hydride sulfide [Ta2(η5-C5Me5)2(H)Ph(µ-S)(µ3-S)]2 (5). Extending our studies toward tantalum alkyl precursors containing functional groups susceptible to hydrogenation, such as the allyl-and benzyl-substituted compounds [Ta(η5-C5Me5)(η3-C3H5)(µ-S)]2 and [Ta(η5-C5Me5)(CH2Ph)(µ-S)]2 (2), enables alternative reaction pathways en route to the formation of 4. In the former case, the dimetallic system undergoes selective hydrogenation of the unsaturated allyl moiety, forming the asymmetric complex [{Ta(η5-C5Me5)(η3-C3H5)}(µ-S)2{Ta(η5-C5Me5)(C3H7)}] (6) with only one propyl fragment. Species 2, in addition to the hydrogenation of one benzyl fragment and concomitant toluene release, also undergoes partial hydrogenation and dearomatization of the phenyl ring on the vicinal benzyl unity to give a η5-cyclohexadienyl complex [Ta2(η5-C5Me5)2(µ-CH2C6H6)(µ-S)2] (7). The mechanistic implications of the latter hydrogenation process are discussed by means of DFT calculations.

2.
Inorg Chem ; 62(11): 4570-4580, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36893373

RESUMO

Ru and Rh nanoparticles catalyze the selective H/D exchange in phosphines using D2 as the deuterium source. The position of the deuterium incorporation is determined by the structure of the P-based substrates, while activity depends on the nature of the metal, the properties of the stabilizing agents, and the type of the substituent on phosphorus. The appropriate catalyst can thus be selected either for the exclusive H/D exchange in aromatic rings or also for alkyl substituents. The selectivity observed in each case provides relevant information on the coordination mode of the ligand. Density functional theory calculations provide insights into the H/D exchange mechanism and reveal a strong influence of the phosphine structure on the selectivity. The isotope exchange proceeds via C-H bond activation at nanoparticle edges. Phosphines with strong coordination through the phosphorus atom such as PPh3 or PPh2Me show preferred deuteration at ortho positions of aromatic rings and at the methyl substituents. This selectivity is observed because the corresponding C-H moieties can interact with the nanoparticle surface while the phosphine is P-coordinated, and the C-H activation results in stable metallacyclic intermediates. For weakly coordinating phosphines such as P(o-tolyl)3, the interaction with the nanoparticle can occur directly through phosphine substituents, and then, other deuteration patterns are observed.

3.
Angew Chem Int Ed Engl ; 62(30): e202304791, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37166170

RESUMO

Regioselective borylcupration of borylated skipped (Z)-dienes generates diborylated alkylcopper species that are involved in an intramolecular stereospecific B/Cu 1,3-rearrangement by migration of Bpin moiety from C(sp2 ) to C(sp3 ). DFT mechanistic studies showed that boryl migration occurs through the formation of 4-membered boracycle intermediate with a moderate free-energy barrier. Moreover, the use of KOMe forms stable Lewis base adducts with Bpin moieties that blocks the reaction. Subsequently to the 1,3-boron shift, the in situ electrophilic trapping allows selective C-H, C-C and C-X bonds, followed by intramolecular cross coupling giving access to cyclic functionalized alkylidenecyclohexanes or alkylidenecyclobutanes.

4.
J Am Chem Soc ; 144(20): 8951-8960, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35536652

RESUMO

Aqueous solutions of polyoxometalates (POMs) have been shown to have potential as high-capacity energy storage materials due to their potential for multi-electron redox processes, yet the mechanism of reduction and practical limits are currently unknown. Herein, we explore the mechanism of multi-electron redox processes that allow the highly reduced POM clusters of the form {MO3}y to absorb y electrons in aqueous solution, focusing mechanistically on the Wells-Dawson structure X6[P2W18O62], which comprises 18 metal centers and can uptake up to 18 electrons reversibly (y = 18) per cluster in aqueous solution when the countercations are lithium. This unconventional redox activity is rationalized by density functional theory, molecular dynamics simulations, UV-vis, electron paramagnetic resonance spectroscopy, and small-angle X-ray scattering spectra. These data point to a new phenomenon showing that cluster protonation and aggregation allow the formation of highly electron-rich meta-stable systems in aqueous solution, which produce H2 when the solution is diluted. Finally, we show that this understanding is transferrable to other salts of [P5W30O110]15- and [P8W48O184]40- anions, which can be charged to 23 and 27 electrons per cluster, respectively.

5.
Inorg Chem ; 61(1): 474-485, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34890181

RESUMO

The reaction of [TaCpRX4] (CpR = η5-C5Me5, η5-C5H4SiMe3, η5-C5HMe4; X = Cl, Br) with SiH3Ph resulted in the formation of the dinuclear hydride tantalum(IV) compounds [(TaCpRX2)2(µ-H)2], structurally identified by single-crystal X-ray analyses. These species react with azobenzene to give the mononuclear imide complex [TaCpRX2(NPh)] along with the release of molecular hydrogen. Analogous reactions between the [{Ta(η5-C5Me5)X2}2(µ-H)2] derivatives and the cyclic diazo reagent benzo[c]cinnoline afford the biphenyl-bridged (phenylimido)tantalum complexes [{Ta(η5-C5Me5)X2}2(µ-NC6H4C6H4N)] along with the release of molecular hydrogen. When the compounds [(TaCpRX2)2(µ-H)2] (CpR = η5-C5H4SiMe3, η5-C5HMe4; X = Cl, Br) were employed, we were able to trap the side-on-bound diazo derivatives [(TaCpRX)2{µ-(η2,η2-NC6H4C6H4N)}] (CpR = η5-C5H4SiMe3, η5-C5HMe4; X = Cl, Br) as intermediates in the N═N bond cleavage process. DFT calculations provide insights into the N═N cleavage mechanism, in which the ditantalum(IV) fragment can promote two-electron reductions of the N═N bond at two different metal-metal bond splitting stages.

6.
Angew Chem Int Ed Engl ; 61(37): e202208495, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35857816

RESUMO

1,1-Diborylalkenes can be transformed into (Z)-skipped dienes through CuI -phosphine catalyzed allylic coupling reactions. The energetically preferred formation of (Z)-α-borylalkenyl copper (I) species and the subsequent nucleophilic attack, explains the stereoselective nucleophilic substitution with allyl bromides. The eventual treatment of (Z)-skipped dienes with NaOt Bu promotes cyclization/aromatization patterns via enyne intermediates.

7.
Chemistry ; 27(48): 12352-12361, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34156127

RESUMO

The chemistry of stabilized α-boryl carbanions shows remarkable diversity, and can enable many different synthetic routes towards efficient C-C bond formation. The electron-deficient, trivalent boron center stabilizes the carbanion facilitating its generation and tuning its reactivity. Here, the electronic structure and the reactivity trends of a large dataset of α-boryl carbanions are described. DFT-derived parameters were used to capture their electronic and steric properties, computational reactivity towards model substrates, and crystallographic analysis within the Cambridge Structural Dataset. This study maps the reactivity space by systematically varying the nature of the boryl moiety, the substituents of the carbanionic center, the number of α-boryl motifs, and the metal counterion. In general, the free carbanionic intermediates are described as borata-alkene species with C-B π interactions polarized towards the carbon. Furthermore, it was possible to classify the α-boryl alkylidene metal precursors into three classes directly related to their reactivity: 1) nucleophilic borata-alkene salts with alkali and alkaline earth metals, 2) nucleophilic η2 -(C-B) borata-alkene complexes with early transition metals, Cu and Ag, and 3) α-boryl alkyl complexes with late transition metals. This trend map aids selection of the appropriate reactive synthon depending on the reactivity sought.

8.
Inorg Chem ; 60(2): 807-815, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33411534

RESUMO

The mechanism responsible for peptide bond hydrolysis by Co(III) and Cu(II) complexes with (oxa)cyclen ligands has been revisited by means of computational tools. We propose that the mechanism starts by substrate coordination and an outer-sphere attack on the amide C atom of a solvent water molecule assisted by the metal hydroxo moiety as a general base, which occurs through six-membered ring transition states. This new mechanism represents a more likely scenario than the previously proposed mechanisms that involved an inner-sphere nucleophilic attack through more strained four-membered rings transition states. The corresponding computed overall free-energy barrier of 25.2 kcal mol-1 for hydrolysis of the peptide bond in Phe-Ala by a cobalt(III) oxacyclen catalyst (1) is consistent with the experimental values obtained from rate constants. Also, we assessed the influence of the nature of the ligand throughout a systematic replacement of N by O atoms in the (oxa)cyclen ligand. Increasing the number of coordinating O atoms accelerates the reaction by increasing the Lewis acidity of the metal ion. On the other hand, the higher reactivity observed for the copper(II) oxacyclen catalyst with respect to the analogous Co(III) complex can be attributed to the larger Brönsted basicity of the copper(II) hydroxo ligand. Ultimately, the detailed understanding of the ligand and metal nature effects allowed us to identify the double role of the metal hydroxo complexes as Lewis acids and Brönsted bases and to rationalize the observed reactivity trends.


Assuntos
Cobalto/química , Complexos de Coordenação/química , Cobre/química , Ciclamos/química , Peptídeos/química , Catálise , Teoria da Densidade Funcional , Hidrólise , Ligantes , Conformação Molecular , Termodinâmica
9.
Chemistry ; 26(26): 5799-5809, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32104951

RESUMO

The influence of the composition of chaotropic polyoxometalate (POM) anions on their affinity to biological systems was studied by means of atomistic molecular dynamics (MD) simulations. The variations in the affinity to hen egg-white lysozyme (HEWL) were analyzed along two series of POMs whereby the charge or the size and shape of the metal cluster are modified systematically. Our simulations revealed a quadratic relationship between the charge of the POM and its affinity to HEWL as a consequence of the parabolic growth of POM⋅⋅⋅water interaction with the charge. As the charge increases, POMs become less chaotropic (more kosmotropic) increasing the number and the strength of POM-water hydrogen bonds and structuring the solvation shell around the POM. This atomistic description explains the proportionally larger desolvation energies and less protein affinity for highly charged POMs, and consequently, the preference for moderate charge densities (q/M=0.33). Also, our simulations suggest that POM⋅⋅⋅protein interactions are size-specific. The cationic pockets of HEWL protein show a preference for Keggin-like structures, which display the optimal dimensions (≈1 nm). Finally, we developed a quantitative multidimensional model for protein affinity with predictive ability (r2 =0.97; q2 =0.88) using two molecular descriptors that account for the charge density (charge per metal atom ratio; q/M) and the size and shape (shape weighted-volume; VS ).


Assuntos
Ânions/química , Cátions/química , Muramidase/química , Compostos de Tungstênio/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
10.
Inorg Chem ; 58(18): 12157-12166, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31448905

RESUMO

Treatment of the dinuclear compound [{Ti(η5-C5Me5)Cl2}2(µ-O)] with allylmagnesium chloride provides the formation of the allyltitanium(III) derivative [{Ti(η5-C5Me5)(µ-C3H5)}2(µ-O)] (1), structurally identified by single-crystal X-ray analysis. Density functional theory (DFT) calculations confirm that the electronic structure of 1 is a singlet state, and the molecular orbital analysis, along with the short Ti-Ti distance, reveal the presence of a metal-metal single bond between the two Ti(III) centers. Complex 1 reacts rapidly with organic azides, RN3 (R = Ph, SiMe3), to yield the allyl µ-imido derivatives [{Ti(η5-C5Me5)(CH2CH═CH2)2}2(µ-NR)(µ-O)] [R = Ph(2), SiMe3(3)] along with molecular nitrogen release. Reaction of 2 and 3 with H2 leads to the µ-imido propyl species [{Ti(η5-C5Me5)(CH2CH2CH3)2}2(µ-NR)(µ-O)] [R = Ph(4), SiMe3(5)]. Theoretical calculations were used to gain insight into the hydrogenation mechanism of complex 3 and rationalize the lower reactivity of 2. Initially, the µ-imido bridging group in these complexes activates the H2 molecule via addition to the Ti-N bonds. Subsequently, the titanium hydride intermediates induce a change in hapticity of the allyl ligands, and the nucleophilic attack of the hydride to the allyl groups leads to metallacyclopropane intermediates. Finally, the proton transfer from the amido group to the metallacyclopropane moieties affords the propyl complexes 4 and 5.

11.
Inorg Chem ; 58(6): 3881-3894, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30830759

RESUMO

A series of stable reduction-oxidation states of the cagelike [I@VIV xVV18- xO42]5- x polyoxovanadate (POV) with x = 8, 10, 12, 16, and 18 were studied with density functional theory and molecular dynamics to gain insight into the structural and electron distribution characteristics of these metal-oxo clusters and to analyze the charge/redox-dependent assemblage processes in water and acetonitrile (MeCN) solutions. The calculations show that the interplay between the POV redox state (molecular charge) and the solvent polarity, countercation size, and hydrophilicity (or hydrophobicity) controls the POV agglomeration phenomena, which substantially differ between aqueous and MeCN media. In MeCN, agglomeration is more pronounced for intermediate-charged POVs, whereas in water, the lowest-charged POVs and organic countercations tend to agglomerate into a microphase. Tests made on wet MeCN show diminished agglomeration with respect to pure MeCN. Simulations with alkali countercations in water show that only the highest-charged POV can form agglomerates. The herein presented theoretical investigation aims to support experimental studies of POVs in the field of functional nanomaterials and surfaces, where controlled molecular deposition from the liquid phase onto solid substrates requires knowledge about the features of these metal-oxo clusters in discrete solutions.

12.
Inorg Chem ; 58(17): 11308-11316, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31411866

RESUMO

The 9-cobalt(II)-containing trimeric, cyclic polyanion [Co9(OH)3(H2O)6(PO4)2(B-α-GeW9O34)3]21- (1) was synthesized in an aqueous phosphate solution at pH 8 and isolated as a hydrated mixed sodium-cesium salt. Polyanion 1 was structurally and compositionally characterized in the solid state by single-crystal X-ray diffraction, Fourier transform infrared spectroscopy, as well as thermogravimetric and elemental analyses. The magnetic and electrochemical properties of 1 were also studied and compared with those of its phosphorus analogue, [Co9(OH)3(H2O)6(HPO4)2(B-α-PW9O34)3]16- (Co9-P). The electrochemical water oxidation activity of the cesium salt of 1 under heterogeneous conditions was also studied and shown to be superior to that of Co9-P. The experimental results were supported by computational studies.

13.
J Am Chem Soc ; 140(44): 14903-14914, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30362733

RESUMO

Here we report on the use of a silanol-decorated polyoxotungstate, [SbW9O33( tBuSiOH)3]3- (1), as a molecular support to describe the coordination of a vanadium atom at a single-site on silica surfaces. By reacting [V(Mes)3·thf] (Mes = 2,4,6-trimethylphenyl) with 1 in tetrahydrofuran, the vanadium(III) derivative [SbW9O33( tBuSiO)3V(thf)]3- (2) was obtained. Compound 2 displays the paramagnetic behavior expected for a d2-VIII high spin complex (SQUID measurements) with a triplet electronic ground state (ca. 30 kcal·mol-1 more stable than the singlet, from DFT calculations). Compound 2 proves to be a reliable model for reduced isolated-vanadium atom dispersed on silica surfaces [(≡Si-O)3VIII(OH2)], an intermediate that is often proposed in a Mars-van Krevelen type mechanism for partial oxidation of light alcohols. Oxidation of 2 under air produced the oxo-derivative [SbW9O33( tBuSiO)3VO]3- (3). In compound 2, the d2-electrons are localized in degenerated d(V) orbitals, whereas in the electronically analogous bireduced-[SbW9O33( tBuSiO)3VO]5-, 3·(2e), one electron is localized on d(V) orbital and the second one is delocalized on the polyoxotungstic framework, leading to a unique case of a bireduced heteropolyanion derivative with completely decoupled d1-V(IV) and d1-W(V). Our body of experimental results (EPR, magnetic measurements, spectroelectrochemical studies, Raman spectroscopy) and theoretical studies highlights (i) the role of the apical ligand coordination, i.e., thf (σ-donor) vs oxo (π-donor), in destabilizing or stabilizing the d(V) orbitals relative to the d(W) orbitals, and (ii) a geometrical distortion of the O3VO entity that causes a splitting of the degenerated orbitals and the stabilization of one d(V) orbital in the bireduced compound 3·(2e).

14.
Chemistry ; 24(53): 14059-14063, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-29901236

RESUMO

Complete stereocontrol on the transition-metal-free hydroboration of the distal double bond of allenamides could be achieved when allenamides contained acetyl substituents, which provided exclusively the Z-isomer. The consecutive Pd-catalyzed cross-coupling reaction allowed the straightforward formation of trisubstituted enamides, with total control of the stereoselectivity.

15.
Chemistry ; 23(21): 5066-5075, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28177532

RESUMO

We describe herein the development of quantitative structure-activity relationships (QSAR) for the nucleophilicity of trivalent boron compounds covering boryl fragments bonded to alkali and alkaline-earth metals, to transition metals, and to sp3 boron units in diboron reagents. We used the charge of the boryl fragment (q[B]) and the boron p/s population ratio (p/s) to describe the electronic structures of boryl moieties, whereas the distance-weighted volume (Vw ) descriptor was used to evaluate the steric effects. The three-term easy-to-interpret QSAR model showed statistical significance and predictive ability (r2 =0.88, q2 =0.83). The use of chemically meaningful descriptors has allowed identification of the factors governing the boron nucleophilicity and indicates that the most efficient nucleophiles are those with enhanced the polarization of the B-X bond towards the boron atom and reduced steric bulk. A detailed analysis of the potential energy surfaces of different types of boron substituents has provided insight into the mechanism and established an order of nucleophilicity for boron in B-X: X=Li>Cu>B(sp3 )>Pd. Finally, we used the QSAR model to make a priori predictions of experimentally untested compounds.

16.
Inorg Chem ; 56(7): 4148-4156, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28318233

RESUMO

The mechanism by which Zr-substituted and other transition metal-substituted polyoxometalates (POMs) form covalently linked dimers has been analyzed by means of static density functional theory (DFT) calculations with a continuous solvent model as well as Car-Parrinello molecular dynamics (CPMD) simulations with explicit solvent molecules. The study includes different stages of the process: the formation of the active species by alkalination of the solution and formation of intercluster linkages. CPMD simulations show that the Zr-triaqua precursor, [W5O18Zr(H2O)3]2-, under basic conditions, reacts with hydroxide anions to form Zr-aqua-hydroxo active species, [W5O18Zr(OH)(H2O)]3-. We computed the DFT potential energy profile for dimerization of [W5O18TM(OH)]n- [TM = ZrIV(H2O), ZrIV, TiIV, and WVI] anions. The resulting overall energy barrier is low for ZrIV, moderate for TiIV, and high for WVI. The computed thermodynamic balance favors the dibridged (µOH)2 linkages for ZrIV, the monobridged (µOH) linkage for TiIV, and the monomeric forms for WVI, in agreement with experimentally observed trends. The lowest energy barrier and largest coordination number of Zr-substituted POMs are both a consequence of the flexible coordination environment and larger radius of Zr.

17.
Chemistry ; 22(43): 15280-15289, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27531593

RESUMO

The molecular interactions between the CeIV -substituted Keggin anion [PW11 O39 Ce(OH2 )4 ]3- (CeK) and hen egg-white lysozyme (HEWL) were investigated by molecular dynamics simulations. The analysis of CeK was compared with the CeIV -substituted Keggin dimer [(PW11 O39 )2 Ce]10- (CeK2 ) and the ZrIV -substituted Lindqvist anion [W5 O18 Zr(OH2 )(OH)]3- (ZrL) to understand how POM features such as shape, size, charge, or type of incorporated metal ion influence the POM⋅⋅⋅protein interactions. Simulations revealed two regions of the protein in which the CeK anion interacts strongly: cationic sites formed by Arg21 and by Arg45 and Arg68. The POMs chiefly interact with the side chains of the positively charged (arginines, lysines) and the polar uncharged residues (tyrosines, serines, aspargines) via electrostatic attraction and hydrogen bonding with the oxygen atoms of the POM framework. The CeK anion shows higher protein affinity than the CeK2 and ZrL anions, because it is less hydrophilic and it has the right size and shape for establishing interactions with several residues simultaneously. The larger, more negatively charged CeK2 anion has a high solvent-accessible surface, which is sub-optimal for the interaction, while the smaller ZrL anion is highly hydrophilic and cannot efficiently interact with several residues simultaneously.

18.
Inorg Chem ; 55(12): 6080-4, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27232155

RESUMO

A DFT study revealed that the mechanism of alkene epoxidation with hydrogen peroxide catalyzed by Ti-containing polyoxometalates (POMs) depends on the Ti coordination environment: For rigid and hindered Ti centers, the unprecedented ß-oxygen transfer from the titanium hydroperoxo species becomes favored over the α-oxygen one. Improving the model for catalyst description, the calculations were able to reproduce the Arrhenius activation energy values determined in kinetic studies. Unlike protonation, the possible ion-pairing between POMs and countercations has a minor effect on the electrophlicity of the catalyst and, consequently, on the activity of epoxidation.

19.
Inorg Chem ; 55(16): 8041-7, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27479533

RESUMO

Coordination of the reactive phosphinitopyridylphenyl PONCPh ligand L(H) to NiBr2 initially yields paramagnetic brown NiBr2(L(H)) (1), but addition of triethylamine results in fast and facile cyclometalation at Ni(II), giving NiBr(κ(3)-P,N,C-L) (2) as well-defined species. This is a rare example of direct cyclometalation at Ni(II) from a C-H bond in a ligand structure other than encumbering ligands (e.g., ECE pincers). Diamagnetic yellow complex 2 reacts instantaneously with HBF4 to give purple [NiBr(κ(3)-P,N-L(H))]BF4 (3). A very unusual (an)agostic Ni(CPh-H) interaction in the solid-state structure of 3 was unequivocally demonstrated using single-crystal X-ray crystallography and was interpreted by density functional theory calculations (quantum theory of atoms in molecules and electron localization function analysis). These compounds may be viewed as models for key intermediates in the Ni-catalyzed C-H functionalization of arenes.

20.
Angew Chem Int Ed Engl ; 55(51): 15766-15770, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27897413

RESUMO

We introduce the class of discrete silver(I)-palladium(II)-oxo nanoclusters with the preparation of {Ag4 Pd13 } and {Ag5 Pd15 }. Both polyanions represent the first examples of noble metal-capped polyoxo-noble-metalates in a fully inorganic assembly, featuring an unprecedented host-guest mode containing hetero- and homometallic Ag-Pd and Ag-Ag bonding interactions. Comprehensive theoretical calculations suggest that the Ag-Pd metallic bonds originate partially from surface confinement of AgI guest ions onto the anionic polyoxopalladate host that is induced by strong electrostatic forces. This work opens the field of fully inorganic silver-palladium-oxo nanoclusters, which can be considered as discrete mixed noble metal precursors for the formation of monodisperse core-shell nanoparticles, with high relevance for catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA