Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39274636

RESUMO

One challenge for 3D printing is that the mortar must flow easily through the printer nozzle, and after printing, it must develop compressive strength fast and high enough to support the layers on it. This requires an exact and difficult control of the superplasticizer (SP) dosing. Nanocrystalline cellulose (CNC) has gained significant interest as a rheological modifier of mortar by interacting with the various cement components. This research studied the potential of nanocrystalline cellulose (CNC) as a mortar aid for 3D printing and its interactions with SPs. Interactions of a CNC and SP with cement suspensions were investigated by means of monitoring the effect on cement dispersion (by monitoring the particle chord length distributions in real time) and their impact on mortar mechanical properties. Although cement dispersion was increased by both CNC and SP, only CNC prevented cement agglomeration when shearing was reduced. Furthermore, combining SP and CNC led to faster development of compressive strength and increased compressive strength up to 30% compared to mortar that had undergone a one-day curing process.

2.
Materials (Basel) ; 16(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37763558

RESUMO

In this study, different lightweight expanded glass aggregates (LEGAs) were produced from glass cullet and various carbonated wastes, through a thermal impact process. The effects of LEGA microstructure and morphology on both the adherence to the cement paste and the mechanical properties of mortars after 28 days of curing were studied. The properties of lightweight mortars made of either LEGAs or expanded clay aggregates were compared. The results demonstrated the feasibility of using LEGAs to produce glass lightweight aggregate mortar, with flexural and compressive strength values ranging from 5.5 to 8.2 MPa and from 28.1 to 47.6 MPa, respectively. The differences in mechanical properties were explained according to the microstructures of the fracture surfaces. Thus, arlite-type ceramic aggregates presented surface porosities that allowed mortar intrusion and the formation of an interconnected interface; although the surfaces of the vitreous aggregates were free from porosity due to their vitreous nature, the mortars obtained from different wastes presented compressive and flexural strengths in the range of lightweight mortars.

3.
Materials (Basel) ; 14(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34683702

RESUMO

Fiber reinforcement of concrete is an effective technique of providing ductility to concrete, increasing its flexural residual strength while reducing its potential for cracking due to drying shrinkage. There are currently a wide variety of industrial fibers on the market. Recycled steel fibers (RSF) from tires could offer a viable substitute of industrialized fibers in a more sustainable and eco-friendly way. However, mistrust exists among users, based on fear that the recycling process will reduce the performance, coupled with the difficulty of characterization of the geometry of the RSF, as a consequence of the size variability introduced by the recycling process. This work compares the behavior of RSF from tires compared with industrialized steel or polypropylene fibers, evaluating the fresh state, compressive strength, flexural residual strength, and drying behavior. The concept of Equivalent Fiber Length (EFL) is also defined to help the statistical geometrical characterization of the RSF. A microstructural analysis was carried out to evaluate the integration of the fiber in the matrix, as well as the possible presence of contaminants. The conclusion is reached that the addition of RSF has a similar effect to that of industrialized fibers on concrete's properties when added at the same percentage.

4.
Materials (Basel) ; 12(15)2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31357418

RESUMO

Crystalline hydrophilic additives are increasingly used as efficient methods for reducing water permeability in concrete. Their effectiveness in hindering water penetration has been proven in different cementitious materials, although scarce information has been reported concerning their action mechanism. In the present work, the efficacy of a hydrophilic blended crystalline mix (Krystaline Add1) as a water-reducing additive has been confirmed. Furthermore, an extended study about how the presence of the additive influences both the fresh state and the hardened state properties is presented. Finally, characterization techniques such as Mercury Intrusion Porosimetry (MIP), X-ray Powder Diffraction (XRD) and Back-Scattered Scanning Electron Microscopy (BSEM) with Energy Dispersive X-ray analysis (EDAX) have been used for deducing the mechanism of the additive. No significant deleterious influence on the concrete properties due to the addition of the additive has been detected. In fact, the additive seems to have provided a positive influence on the concrete given that a slight reduction in the w/c ratio for similar consistency has been detected, with the subsequent improvement of the compressive strength values. Its effectiveness as a water permeability reducing additive has shown encouraging results having reduced the water permeability by approximately 50% during testing. The action mechanism of the studied additive seems to be related to hydration reactions in the presence of water, producing new solid amorphous phases in the concrete bulk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA