Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(11): 18356-18364, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381548

RESUMO

We present a cost-effective electro-optic frequency comb generation and equalization method using a single phase modulator inserted in a Sagnac interferometer layout. The equalization relies on the interference of comb lines generated in both clockwise and counter-clockwise directions. Such a system is capable of providing flat-top combs with flatness values comparable with other approaches proposed in literature, yet offering a simplified synthesis and reduced complexity. The frequency range of operation at hundreds of MHz renders this scheme particularly interesting for some sensing and spectroscopy applications.

2.
Sci Rep ; 10(1): 15752, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978442

RESUMO

Most present-day resonant systems, throughout physics and engineering, are characterized by a strict time-reversal symmetry between the rates of energy coupled in and out of the system, which leads to a trade-off between how long a wave can be stored in the system and the system's bandwidth. Any attempt to reduce the losses of the resonant system, and hence store a (mechanical, acoustic, electronic, optical, or of any other nature) wave for more time, will inevitably also reduce the bandwidth of the system. Until recently, this time-bandwidth limit has been considered fundamental, arising from basic Fourier reciprocity. In this work, using a simple macroscopic, fiber-optic resonator where the nonreciprocity is induced by breaking its time-invariance, we report, in full agreement with accompanying numerical simulations, a time-bandwidth product (TBP) exceeding the 'fundamental' limit of ordinary resonant systems by a factor of 30. We show that, although in practice experimental constraints limit our scheme, the TBP can be arbitrarily large, simply dictated by the finesse of the cavity. Our results open the path for designing resonant systems, ubiquitous in physics and engineering, that can simultaneously be broadband and possessing long storage times, thereby offering a potential for new functionalities in wave-matter interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA