Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 109(4): 909-926, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34808015

RESUMO

Standard models of plant speciation assume strictly dichotomous genealogies in which a species, the ancestor, is replaced by two offspring species. The reality in wind-pollinated trees with long evolutionary histories is more complex: species evolve from other species through isolation when genetic drift exceeds gene flow; lineage mixing can give rise to new species (hybrid taxa such as nothospecies and allopolyploids). The multi-copy, potentially multi-locus 5S rDNA is one of few gene regions conserving signal from dichotomous and reticulate evolutionary processes down to the level of intra-genomic recombination. Therefore, it can provide unique insights into the dynamic speciation processes of lineages that diversified tens of millions of years ago. Here, we provide the first high-throughput sequencing (HTS) of the 5S intergenic spacers (5S-IGS) for a lineage of wind-pollinated subtropical to temperate trees, the Fagus crenata - F. sylvatica s.l. lineage, and its distant relative F. japonica. The observed 4963 unique 5S-IGS variants reflect a complex history of hybrid origins, lineage sorting, mixing via secondary gene flow, and intra-genomic competition between two or more paralogous-homoeologous 5S rDNA lineages. We show that modern species are genetic mosaics and represent a striking case of ongoing reticulate evolution during the past 55 million years.


Assuntos
DNA Ribossômico/genética , Evolução Molecular , Fagus/genética , Polinização , Árvores/genética , DNA Intergênico , Fluxo Gênico , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , RNA Ribossômico 5S/genética , Vento
2.
Plants (Basel) ; 11(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35631718

RESUMO

Viola sect. Melanium, the so-called pansy, is an allopolyploid morphologically well-defined lineage of ca. 110 perennial and annual species in the northern hemisphere, characterized by markedly complex genomic configurations. Five annual pansies occur in Italy, four of which are morphologically very similar and belong to the informal 'V. tricolor species complex': V. arvensis (2n = 34), V. hymettia (2n = 16), V. kitaibeliana (2n = 16), and V. tricolor (2n = 26). Their field recognition is difficult and reflects a long-debated taxonomy often resulting in doubtful records in field inventories and across European herbaria. The current lack of comprehensive intra- and interspecific comparative studies and a relative scarcity of appropriate genetic markers coupled with unambiguous cytological descriptions are hindering clear taxa circumscription and phylogenetic inferences within this group. In this work, we tested DNA sequence variation of three highly variable plastid markers and High-Throughput Sequencing (HTS) of the nuclear ribosomal 5S-IGS region in an attempt to decipher species identity within the V. tricolor species complex and to obtain an insight on their genome organization and evolution. Our results document the close relationships within this species group, a reliable molecular resolution for V. tricolor, and the common ancestry of V. arvensis and the poorly differentiated V. kitaibeliana and V. hymettia. Evidence of an important inter-population geographical divergence was recorded in V. tricolor and V. arvensis, pointing at the existence of different eco-cytotypes within these entities. Overall diversity patterns and the occurrence of two to four differently diverging 5S-IGS lineages are discussed in the light of the acknowledged taxonomy and genomic evolutive trajectories of sect. Melanium.

3.
PeerJ ; 6: e5793, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356975

RESUMO

Oaks (Quercus) comprise more than 400 species worldwide and centres of diversity for most sections lie in the Americas and East/Southeast Asia. The only exception is the Eurasian sect. Cerris that comprises about 15 species, most of which are confined to western Eurasia. This section has not been comprehensively studied using molecular tools. Here, we assess species diversity and provide a first comprehensive taxonomic and phylogeographic scheme of western Eurasian members of sect. Cerris using plastid (trnH-psbA) and nuclear (5S-IGS) DNA variation with a dense intra-specific and geographic sampling. Chloroplast haplotypes primarily reflected phylogeographic patterns originating from interspecific cytoplasmic gene flow within sect. Cerris and its sister section Ilex. We identified two widespread and ancestral haplotypes, and locally restricted derived variants. Signatures shared with Mediterranean species of sect. Ilex, but not with the East Asian Cerris oaks, suggest that the western Eurasian lineage came into contact with Ilex only after the first (early Oligocene) members of sect. Cerris in Northeast Asia had begun to radiate and move westwards. Nuclear 5S-IGS diversification patterns were more useful for establishing a molecular-taxonomic framework and to reveal hybridization and reticulation. Four main evolutionary lineages were identified. The first lineage is comprised of Q. libani, Q. trojana and Q. afares and appears to be closest to the root of sect. Cerris. These taxa are morphologically most similar to the East Asian species of Cerris, and to both Oligocene and Miocene fossils of East Asia and Miocene fossils of western Eurasia. The second lineage is mainly composed of the widespread Q. cerris and the narrow endemic species Q. castaneifolia, Q. look, and Q. euboica. The third lineage comprises three Near East species (Q. brantii, Q. ithaburensis and Q. macrolepis), well adapted to continental climates with cold winters. The forth lineage appears to be the most derived and comprises Q. suber and Q. crenata. Q. cerris and Q.  trojana displayed high levels of variation; Q. macrolepis and Q. euboica, previously treated as subspecies of Q. ithaburensis and Q. trojana, likely deserve independent species status. A trend towards inter-specific crosses was detected in several taxa; however, we found no clear evidence of a hybrid origin of Q. afares and Q. crenata, as currently assumed.

4.
PeerJ ; 4: e1897, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27123376

RESUMO

Nucleotide sequences from the plastome are currently the main source for assessing taxonomic and phylogenetic relationships in flowering plants and their historical biogeography at all hierarchical levels. One major exception is the large and economically important genus Quercus (oaks). Whereas differentiation patterns of the nuclear genome are in agreement with morphology and the fossil record, diversity patterns in the plastome are at odds with established taxonomic and phylogenetic relationships. However, the extent and evolutionary implications of this incongruence has yet to be fully uncovered. The DNA sequence divergence of four Euro-Mediterranean Group Ilex oak species (Quercus ilex L., Q. coccifera L., Q. aucheri Jaub. & Spach., Q. alnifolia Poech.) was explored at three chloroplast markers (rbcL, trnK/matK, trnH-psbA). Phylogenetic relationships were reconstructed including worldwide members of additional 55 species representing all Quercus subgeneric groups. Family and order sequence data were harvested from gene banks to better frame the observed divergence in larger taxonomic contexts. We found a strong geographic sorting in the focal group and the genus in general that is entirely decoupled from species boundaries. High plastid divergence in members of Quercus Group Ilex, including haplotypes shared with related, but long isolated oak lineages, point towards multiple geographic origins of this group of oaks. The results suggest that incomplete lineage sorting and repeated phases of asymmetrical introgression among ancestral lineages of Group Ilex and two other main Groups of Eurasian oaks (Cyclobalanopsis and Cerris) caused this complex pattern. Comparison with the current phylogenetic synthesis also suggests an initial high- versus mid-latitude biogeographic split within Quercus. High plastome plasticity of Group Ilex reflects geographic area disruptions, possibly linked with high tectonic activity of past and modern distribution ranges, that did not leave imprints in the nuclear genome of modern species and infrageneric lineages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA