Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2023): 20240702, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38808446

RESUMO

In 2004, David Frodin published a landmark review of the history and concepts of big plant genera. Two decades of taxonomic activity have taken place since, coinciding with a revolution in phylogenetics and taxonomic bioinformatics. Here we use data from the World Flora Online (WFO) to provide an updated list of big (more than 500 species) and megadiverse (more than 1000 species) flowering plant genera and highlight changes since 2004. The number of big genera has increased from 57 to 86; today one of every four plant species is classified as a member of a big genus, with 14% in just 28 megadiverse genera. Most (71%) of the growth in big genera since 2000 is the result of new species description, not generic re-circumscription. More than 15% of all currently accepted flowering plant species described in the last two decades are in big genera, suggesting that groups previously considered intractable are now being actively studied taxonomically. Despite this rapid growth in big genera, they remain a significant yet understudied proportion of plant diversity. They represent a significant proportion of global plant diversity and should remain a priority not only for taxonomy but for understanding global diversity patterns and plant evolution in general.


Assuntos
Biodiversidade , Magnoliopsida , Filogenia , Plantas/classificação
2.
Mol Phylogenet Evol ; 194: 108031, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360081

RESUMO

Our knowledge of the systematics of the papilionoid legume tribe Brongniartieae has greatly benefitted from recent advances in molecular phylogenetics. The tribe was initially described to include species marked by a strongly bilabiate calyx and an embryo with a straight radicle, but recent research has placed taxa from the distantly related core Sophoreae and Millettieae within it. Despite these advances, the most species-rich genera within the Brongniartieae are still not well studied, and their morphological and biogeographical evolution remains poorly understood. Comprising 35 species, Harpalyce is one of these poorly studied genera. In this study, we present a comprehensive, multi-locus molecular phylogeny of the Brongniartieae, with an increased sampling of Harpalyce, to investigate morphological and biogeographical evolution within the group. Our results confirm the monophyly of Harpalyce and indicate that peltate glandular trichomes and a strongly bilabiate calyx with a carinal lip and three fused lobes are synapomorphies for the genus, which is internally divided into three distinct ecologically and geographically divergent lineages, corresponding to the previously recognized sections. Our biogeographical reconstructions demonstrate that Brongniartieae originated in South America during the Eocene, with subsequent pulses of diversification in South America, Mesoamerica, and Australia. Harpalyce also originated in South America during the Miocene at around 20 Ma, with almost synchronous later diversification in South America and Mexico/Mesoamerica beginning 10 Ma, but mostly during the Pliocene. Migration of Harpalyce from South to North America was accompanied by a biome and ecological shift from savanna to seasonally dry forest.


Assuntos
Fabaceae , Filogenia , Fabaceae/genética , Pradaria , Florestas , Ecossistema , Teorema de Bayes , Filogeografia
3.
Brittonia ; 75(2): 180-190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37317680

RESUMO

Macrolobium paulobocae is presented as a new species of the legume subfamily Detarioideae. It is restricted to seasonally flooded igapó forests in the Central Amazon. We provide a description, illustration, photographs, and a distribution map of the new species, as well as a table of comparative morphology with similar, likely phylogenetically related species. The epithet is in honor of Paulo Apóstolo Costa Lima Assunção, or Paulo Boca, a great Amazonian botanist, victim of COVID-19 in January 2021.

4.
Plant J ; 107(3): 861-875, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34021942

RESUMO

The plastid genome (plastome), while surprisingly constant in gene order and content across most photosynthetic angiosperms, exhibits variability in several unrelated lineages. During the diversification history of the legume family Fabaceae, plastomes have undergone many rearrangements, including inversions, expansion, contraction and loss of the typical inverted repeat (IR), gene loss and repeat accumulation in both shared and independent events. While legume plastomes have been the subject of study for some time, most work has focused on agricultural species in the IR-lacking clade (IRLC) and the plant model Medicago truncatula. The subfamily Papilionoideae, which contains virtually all of the agricultural legume species, also comprises most of the plastome variation detected thus far in the family. In this study three non-papilioniods were included among 34 newly sequenced legume plastomes, along with 33 publicly available sequences, to assess plastome structural evolution in the subfamily. In an effort to examine plastome variation across the subfamily, approximately 20% of the sampling represents the IRLC with the remainder selected to represent the early-branching papilionoid clades. A number of IR-related and repeat-mediated changes were identified and examined in a phylogenetic context. Recombination between direct repeats associated with ycf2 resulted in intraindividual plastome heteroplasmy. Although loss of the IR has not been reported in legumes outside of the IRLC, one genistoid taxon was found to completely lack the typical plastome IR. The role of the IR and non-IR repeats in the progression of plastome change is discussed.


Assuntos
Fabaceae/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Sequências Repetidas Invertidas , Filogenia , Plastídeos/genética , Sequência Conservada , Produtos Agrícolas/genética , Fabaceae/classificação , Genoma de Planta , Proteínas de Plantas
5.
New Phytol ; 235(6): 2365-2377, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35901264

RESUMO

Nitrogen-fixing symbiosis is globally important in ecosystem functioning and agriculture, yet the evolutionary history of nodulation remains the focus of considerable debate. Recent evidence suggesting a single origin of nodulation followed by massive parallel evolutionary losses raises questions about why a few lineages in the N2 -fixing clade retained nodulation and diversified as stable nodulators, while most did not. Within legumes, nodulation is restricted to the two most diverse subfamilies, Papilionoideae and Caesalpinioideae, which show stable retention of nodulation across their core clades. We characterize two nodule anatomy types across 128 species in 56 of the 152 genera of the legume subfamily Caesalpinioideae: fixation thread nodules (FTs), where nitrogen-fixing bacteroids are retained within the apoplast in modified infection threads, and symbiosomes, where rhizobia are symplastically internalized in the host cell cytoplasm within membrane-bound symbiosomes (SYMs). Using a robust phylogenomic tree based on 997 genes from 147 Caesalpinioideae genera, we show that losses of nodulation are more prevalent in lineages with FTs than those with SYMs. We propose that evolution of the symbiosome allows for a more intimate and enduring symbiosis through tighter compartmentalization of their rhizobial microsymbionts, resulting in greater evolutionary stability of nodulation across this species-rich pantropical legume clade.


Assuntos
Fabaceae , Rhizobium , Ecossistema , Fabaceae/genética , Nitrogênio , Fixação de Nitrogênio , Nodulação/genética , Nódulos Radiculares de Plantas , Simbiose
6.
Mol Phylogenet Evol ; 166: 107329, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34678410

RESUMO

The papilionoid legume genus Ormosia (Fabaceae) comprises about 150 species of trees and exhibits a striking disjunct geographical distribution between the New World- and Asian and Australasian wet tropics and subtropics. Modern classifications of Ormosia are not grounded on a well-substantiated phylogenetic hypothesis and have been limited to just portions of the geographical range of the genus. The lack of an evolutionarily-based foundation for systematic studies has hindered taxonomic work on the genus and prevented the testing of biogeographical hypotheses related to the origin of the Old World/New World disjunction and the individual dispersal histories within both areas. Here, we present the most comprehensively sampled molecular phylogeny of Ormosia to date, based on analysis of both nuclear (ITS) and plastid (matK and trnL-F) DNA sequences from 82 species of the genus. Phylogenetically-based divergence times and ancestral range estimations are employed to test hypotheses related to the biogeographical history of the genus. We find strong support for the monophyly of Ormosia and the grouping of all sampled Asian species of the genus into two comparably sized clades, one of which is sister to another large clade containing all sampled New World species. Within the New World clade, additional resolution supports the grouping of most species into three mutually exclusive subordinate clades. The remaining New World species form a fourth well-supported clade in the analyses of plastid sequences, but that result is contradicted by the analysis of ITS. With few exceptions the supported clades have not been previously recognized as taxonomic groups. The biogeographical analysis suggests that Ormosia originated in continental Asia and dispersed to the New World in the Oligocene or early Miocene via long-distance trans-oceanic dispersal. We reject the hypothesis that the inter-hemispheric disjunction in Ormosia resulted from fragmentation of a more continuous "Boreotropical" distribution since the dispersal post-dates Eocene climatic maxima. Both of the Old World clades appear to have originated in mainland Asia and subsequently dispersed into the Malay Archipelago and beyond, at least two lineages dispersing across Wallace's Line as far as the Solomon Islands and northeastern Australia. In the New World, the major clades all originated in Amazonia. Dispersal from Amazonia into peripheral areas in Central America, the Caribbean, and Extra-Amazonian Brazil occurred multiple times over varying time scales, the earliest beginning in the late Miocene. In a few cases, these dispersals were followed by local diversification, but not by reverse migration back to Amazonia. Within each of the two main areas of distribution, multiple modest bouts of oceanic dispersal were required to achieve the modern distributions.


Assuntos
Fabaceae , Teorema de Bayes , Evolução Biológica , Fabaceae/genética , Filogenia , Filogeografia , Plastídeos/genética
7.
Am J Bot ; 109(1): 130-150, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35014023

RESUMO

PREMISE: Understanding the evolutionary history of flowering plants has been enriched by the integration of molecular phylogenies and evidence from the fossil record. Fossil fruits and leaves from the late Paleocene and Eocene of Wyoming and Eocene of Kentucky and Tennessee are described as extinct genera in the tropical American Bowdichia clade of the legume subfamily Papilionoideae. Recent phylogenetic study and taxonomic revision of the Bowdichia clade have facilitated understanding of relationships of the fossil taxa and their evolutionary implications and paleoenvironmental significance. METHODS: The fossils were studied using standard methods of specimen preparation and light microscopy and compared to fruits and leaves from extant legume taxa using herbarium collections. Phylogenetic relationships of the fossil taxa were assessed using morphology and DNA sequence data. RESULTS: Two new fossil genera are described and their phylogenetic relationships are established. Paleobowdichia lamarensis is placed as sister to the extant genus Bowdichia and Tobya claibornensis is placed with the extant genera Guianodendron and Staminodianthus. CONCLUSIONS: These fossils demonstrate that the tropical American Bowdichia clade was present in North America during a period when tropical or subtropical conditions prevailed in the northern Rocky Mountains during the late Paleocene and the Mississippi Embayment during the middle Eocene. These fossils also document that the Bowdichia clade had diversified by the late Paleocene when the fossil record of the family is relatively sparse. This result suggests that future work on early fossil legumes should focus on tropical and subtropical climatic zones, wherever they may occur latitudinally.


Assuntos
Fabaceae , Fósseis , Evolução Biológica , Fabaceae/genética , América do Norte , Filogenia
8.
Toxicol Ind Health ; 38(3): 176-181, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35244457

RESUMO

The application of nuclear technologies in a cargo and container inspection facility can increase the risk of accidents. Estimating the radiation dose in the controlled area generates critical information for elaborating routines aimed at establishing more effective safety procedures. For radiological protection purposes, mapping ambient dose equivalent H*(10) levels is crucial. The radiation source used was a fixed linear accelerator of 4.5 MeV. Five RadEye PRD-ER (Thermo Fisher Scientific) personal radiation monitors and five Geiger-Müller MRAD 111 (Ultra Radac) personal radiation monitors were used for the radiation measurements. The highest ambient equivalent dose rate and dose per scan were found with the Geiger-Müller monitors at values of 5.76E-01 mSv/h and 1.12E-03 mSv, respectively. The results showed that for public individuals, the number of scans at the point of highest dose rate value cannot exceed 893-unit operations. Additionally, the risks involved in the abnormal situation (increased H*(10)) were estimated by using a model to predict the development of solid cancer as a result of occupational radiological exposure. This procedure highlights the risks involved, hence providing initial support to the decision process.


Assuntos
Exposição Ocupacional , Monitoramento de Radiação , Proteção Radiológica , Humanos , Exposição Ocupacional/análise , Doses de Radiação , Monitoramento de Radiação/métodos , Proteção Radiológica/métodos
9.
Syst Biol ; 69(4): 613-622, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32065640

RESUMO

Phylogenomic analyses have helped resolve many recalcitrant relationships in the angiosperm tree of life, yet phylogenetic resolution of the backbone of the Leguminosae, one of the largest and most economically and ecologically important families, remains poor due to generally limited molecular data and incomplete taxon sampling of previous studies. Here, we resolve many of the Leguminosae's thorniest nodes through comprehensive analysis of plastome-scale data using multiple modified coding and noncoding data sets of 187 species representing almost all major clades of the family. Additionally, we thoroughly characterize conflicting phylogenomic signal across the plastome in light of the family's complex history of plastome evolution. Most analyses produced largely congruent topologies with strong statistical support and provided strong support for resolution of some long-controversial deep relationships among the early diverging lineages of the subfamilies Caesalpinioideae and Papilionoideae. The robust phylogenetic backbone reconstructed in this study establishes a framework for future studies on legume classification, evolution, and diversification. However, conflicting phylogenetic signal was detected and quantified at several key nodes that prevent the confident resolution of these nodes using plastome data alone. [Leguminosae; maximum likelihood; phylogenetic conflict; plastome; recalcitrant relationships; stochasticity; systematic error.].


Assuntos
Fabaceae/classificação , Fabaceae/genética , Genomas de Plastídeos/genética , Filogenia
10.
J Hered ; 111(4): 346-356, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32402074

RESUMO

Dipteryx timber has been heavily exploited in South America since 2000s due to the increasing international demand for hardwood. Developing tools for the genetic identification of Dipteryx species and their geographical origin can help to promote legal trading of timber. A collection of 800 individual trees, belonging to 6 different Dipteryx species, was genotyped based on 171 molecular markers. After the exclusion of markers out of Hardy-Weinberg equilibrium or with no polymorphism or low amplification, 83 nuclear, 29 chloroplast, 13 mitochondrial single nucleotide polymorphisms (SNPs), and 2 chloroplast and 5 mitochondrial INDELS remained. Six genetic groups were identified using Bayesian Structure analyses of the nuclear SNPs, which corresponded to the different Dipteryx species collected in the field. Seventeen highly informative markers were identified as suitable for species identification and obtained self-assignment success rates to species level of 78-96%. An additional set of 15 molecular markers was selected to determine the different genetic clusters found in Dipteryx odorata and Dipteryx ferrea, obtaining self-assignment success rates of 91-100%. The success to assign samples to the correct country of origin using all or only the informative markers improved when using the nearest neighbor approach (69-92%) compared to the Bayesian approach (33-80%). While nuclear and chloroplast SNPs were more suitable for differentiating the different Dipteryx species, mitochondrial SNPs were ideal for determining the genetic clusters of D. odorata and D. ferrea. These 32 selected SNPs will be invaluable genetic tools for the accurate identification of species and country of origin of Dipteryx timber.


Assuntos
Dipteryx/genética , Polimorfismo de Nucleotídeo Único , Teorema de Bayes , Análise por Conglomerados , Dipteryx/classificação , Marcadores Genéticos , Genótipo , Geografia , Mutação INDEL , América do Sul , Árvores/genética
11.
Proc Natl Acad Sci U S A ; 114(40): 10695-10700, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923966

RESUMO

Recent debates on the number of plant species in the vast lowland rain forests of the Amazon have been based largely on model estimates, neglecting published checklists based on verified voucher data. Here we collate taxonomically verified checklists to present a list of seed plant species from lowland Amazon rain forests. Our list comprises 14,003 species, of which 6,727 are trees. These figures are similar to estimates derived from nonparametric ecological models, but they contrast strongly with predictions of much higher tree diversity derived from parametric models. Based on the known proportion of tree species in neotropical lowland rain forest communities as measured in complete plot censuses, and on overall estimates of seed plant diversity in Brazil and in the neotropics in general, it is more likely that tree diversity in the Amazon is closer to the lower estimates derived from nonparametric models. Much remains unknown about Amazonian plant diversity, but this taxonomically verified dataset provides a valid starting point for macroecological and evolutionary studies aimed at understanding the origin, evolution, and ecology of the exceptional biodiversity of Amazonian forests.


Assuntos
Biodiversidade , Bases de Dados Factuais , Plantas/classificação , Floresta Úmida , Brasil
12.
Mol Phylogenet Evol ; 109: 191-202, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28089794

RESUMO

The papilionoid legume tribe Brongniartieae comprises a collection of 15 genera with disparate morphologies that were previously positioned in at least four remotely related tribes. The Brongniartieae displays a wide geographical disjunction between Australia and the New World and previous phylogenetic studies had provided conflicting results about the relationships between the American and Australian genera. We carry out phylogenetic analyses of (1) a plastid matK dataset extensively sampled across legumes to solve the enigmatic relationship of the Cuban-endemic monospecific genus Behaimia; and (2) multilocus datasets with focus on all genera ever referred to Brongniartieae. These analyses resulted in a well-resolved and strongly-supported phylogenetic tree of the Brongniartieae. The monophyly of all American genera of Brongniartieae is strongly supported. The doubtful position of the Australian genus Plagiocarpus is resolved within a clade comprising all Australian genera. Behaimia has been traditionally classified in tribe Millettieae, but our new molecular data and re-assessment of morphological traits have resolved the genus within the early-branching papilionoid tribe Brongniartieae. Characters including the pinnately multifoliolate (vs. unifoliolate) leaves, a sessile (vs. stipitate) ovary, and an indehiscent or late dehiscent one-seeded pod distinguish Behaimia from its closer relatives, the South American genera Cyclolobium and Limadendron.


Assuntos
Fabaceae/classificação , Filogenia , Teorema de Bayes , Núcleo Celular/genética , Cuba , Plastídeos/genética
13.
Mol Phylogenet Evol ; 107: 431-442, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27965083

RESUMO

A comprehensively sampled reassessment of the molecular phylogeny of the genistoid legumes questions the traditional placement of Haplormosia, an African monotypic genus traditionally classified within tribe Sophoreae close to the Asian-American geographically disjunct genus Ormosia. Plastid matK sequences placed Haplormosia as sister to the American-Australian tribe Brongniartieae. Despite a superficial resemblance between Haplormosia and Ormosia, a re-examination of the morphology of Haplormosia corroborates the new phylogenetic result. The reciprocally monophyletic deep divergence of the Haplormosia stem lineage from the remaining Brongniartieae is dated to ca. 52Mya, thus supporting a signature of an old single long-distance dispersal during the early Eocene. Conversely, we estimated a relatively recent long-distance dispersal rooted in the Early Miocene for the Australian Brongniartieae clade emerging from within a grade of American Brongniartieae. The Bayesian ancestral area reconstruction revealed the coming and going of neotropical ancestors during the diversification history of the Brongniartieae legumes in Africa and all over the Americas and Australia.


Assuntos
Fabaceae/classificação , Fabaceae/genética , Filogenia , Filogeografia , África , América , Austrália , Sequência de Bases , Teorema de Bayes , Fabaceae/anatomia & histologia , Funções Verossimilhança , Fatores de Tempo
14.
Ann Bot ; 119(3): 417-432, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28025284

RESUMO

BACKGROUND AND AIMS: The study of floral morphology and ontogeny and the re-investigation of existing data help to uncover potential synapomorphic characters and foster our understanding of phylogenetic relationships that rely primarily on molecular analyses. Goniorrhachis marginata is a monotypic caesalpinioid legume (Leguminosae) that shows some interesting floral features, such as a long hypanthium and regular Rosaceae-like flowers. We studied the ontogeny and morphology of the flowers in detail and present our results in a broad phylogenetic context. METHODS: Flower buds were collected in the field, fixed in 70 % ethanol and investigated using scanning electron microscopy. Older buds in spirit were carefully opened to investigate the direction of style bending. Characters of the style from 131 taxa from the main legume lineages were analysed and mapped on a Bayesian molecular phylogeny. KEY RESULTS: The tetramerous calyx is the result of complete loss of one sepal. The formation of the radially symmetrical corolla starts in a typical caesalpinioid pattern with the adaxial petal innermost (ascending aestivation). The young style bends in the abaxial direction, which is a character found exclusively in all studied detarioid legumes and therefore a newly described synapomorphy for the clade. CONCLUSIONS: We show that investigation of unstudied taxa and reinvestigation of published data can uncover new, previously overlooked and important characters. Curvature of the style can be detected in young buds with a hand lens and therefore is an important character for field botanists. Our study reveals the importance of including poorly studied and/or phylogenetically enigmatic taxa in molecular phylogenies and in detailed morphological and ontogenetic analyses.


Assuntos
Fabaceae/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Teorema de Bayes , Evolução Biológica , Evolução Molecular , Fabaceae/anatomia & histologia , Fabaceae/genética , Fabaceae/ultraestrutura , Flores/anatomia & histologia , Flores/genética , Flores/ultraestrutura , Microscopia Eletrônica de Varredura , Filogenia
15.
Mol Phylogenet Evol ; 97: 11-18, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26748266

RESUMO

Aldina (Leguminosae) is among the very few ecologically successful ectomycorrhizal lineages in a family largely marked by the evolution of nodulating symbiosis. The genus comprises 20 species predominantly distributed in Amazonia and has been traditionally classified in the tribe Swartzieae because of its radial flowers with an entire calyx and numerous free stamens. The taxonomy of Aldina is complicated due to its poor representation in herbaria and the lack of a robust phylogenetic hypothesis of relationship. Recent phylogenetic analyses of matK and trnL sequences confirmed the placement of Aldina in the 50-kb inversion clade, although the genus remained phylogenetically isolated or unresolved in the context of the evolutionary history of the main early-branching papilionoid lineages. We performed maximum likelihood and Bayesian analyses of combined chloroplast datasets (matK, rbcL, and trnL) and explored the effect of incomplete taxa or missing data in order to shed light on the enigmatic phylogenetic position of Aldina. Unexpectedly, a sister relationship of Aldina with the Andira clade (Andira and Hymenolobium) is revealed. We suggest that a new tribal phylogenetic classification of the papilionoid legumes should place Aldina along with Andira and Hymenolobium. These results highlight yet another example of the independent evolution of radial floral symmetry within the early-branching Papilionoideae, a large collection of florally heterogeneous lineages dominated by papilionate or bilaterally symmetric flower morphology.


Assuntos
Fabaceae/classificação , Fabaceae/microbiologia , Micorrizas , Filogenia , Teorema de Bayes , Evolução Biológica , Cloroplastos/genética , Fabaceae/anatomia & histologia , Fabaceae/genética , Flores/anatomia & histologia , Funções Verossimilhança , Nódulos Radiculares de Plantas/microbiologia , Simbiose
16.
Mol Phylogenet Evol ; 84: 112-24, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25575702

RESUMO

Recent deep-level phylogenies of the basal papilionoid legumes (Leguminosae, Papilionoideae) have resolved many clades, yet left the phylogenetic placement of several genera unassessed. The phylogenetically enigmatic Amazonian monospecific genus Petaladenium had been believed to be close to the genera of the Genistoid Ormosieae clade. In this paper we provide the first DNA phylogenetic study of Petaladenium and show it is not part of the large Genistoid clade, but is a new branch of the Amburaneae clade, one of the first-diverging lineages of the Papilionoideae phylogeny. This result is supported by the chemical observation that the quinolizidine alkaloids, a chemical synapomorphy of the Genistoids, are absent in Petaladenium. Parsimony and Bayesian phylogenetic analysis of nuclear ITS/5.8S and plastid matK and trnL intron agree with a new interpretation of morphology that Petaladenium is sister to Dussia, a genus comprising ∼18 species of trees largely confined to rainforests in Central America and northern South America. Petaladenium, Dussia, and Myrospermum have papilionate flowers in a clade otherwise with radial floral symmetry, loss of petals or incompletely differentiated petals. Our phylogenetic analyses also revealed well-supported resolution within the three main lineages of the ADA clade (Angylocalyceae, Dipterygeae, and Amburaneae). We also discuss further molecular phylogenetic evidence for the undersampled Amazonian genera Aldina and Monopteryx, and the tropical African Amphimas, Cordyla, Leucomphalos, and Mildbraediodendron.


Assuntos
Fabaceae/classificação , Filogenia , Teorema de Bayes , América Central , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Fabaceae/química , Íntrons , Modelos Genéticos , América do Norte , Folhas de Planta/química , Plastídeos/genética , Análise de Sequência de DNA
17.
Mol Phylogenet Evol ; 90: 1-19, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25934529

RESUMO

Deciphering the phylogenetic relationships within the species-rich Millettioid clade has persisted as one of the major challenges in the systematics and evolutionary history of papilionoid legumes (Leguminosae, Papilionoideae). Historically, the predominantly neotropical lianas of subtribe Diocleinae in the Millettioid legumes have been taxonomically tangled together with the largely heterogeneous tribe Phaseoleae. This work presents a comprehensive molecular phylogenetic analysis based on nuclear and chloroplast markers and includes all genera ever referred to Diocleae except for the monospecific Philippine Luzonia, resolving several key generic relationships within the Millettioid legumes. The first of two separate analyses includes 310 matK accessions and strongly supports the reestablishment of tribe Diocleae as a branch of the Millettioid clade. This work sheds greater light on the higher-level phylogeny of Diocleae and allows the recognition of three major lineages: the Canavalia, Dioclea, and Galactia clades. The second set of phylogenetic analyses utilized nuclear (ITS/5.8S and ETS) and plastid (matK and trnT-Y) DNA sequences to reveal (i) the monophyly of Canavalia and Cleobulia; (ii) the monophyly of Bionia with the exclusion of Bionia bella; (iii) the paraphyly of Dioclea with respect to Cleobulia, Cymbosema, and Macropsychanthus; (iv) the paraphyly of Cratylia with respect to the broadly polyphyletic Camptosema; and (v) the polyphyly of Galactia with species scattered widely across the tree.


Assuntos
Dioclea/classificação , Filogenia , Teorema de Bayes , Evolução Biológica , Núcleo Celular/genética , Cloroplastos/genética , DNA de Plantas/análise , DNA de Plantas/genética , Flores/genética , Humanos , Plastídeos/genética , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
18.
Am J Bot ; 102(11): 1780-93, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26526814

RESUMO

PREMISE OF THE STUDY: Floral development can help to shed light on puzzling features across flowering plants. The enigmatic Amazonian monospecific genus Petaladenium of the legume family (Leguminosae) had rarely been collected and only recently became available for ontogenetic studies. The fimbriate-glandular wing petals of P. urceoliferum are unique among the more than 19000 legume species. Ontogenetic data illuminate the systematic position of the genus and foster our understanding on floral evolution during the early diversification of the papilionoid legumes. METHODS: Flower buds were collected in the field, fixed in 70% ethanol, and investigated using scanning electron microscopy (SEM). Results were compared with existing material from early-diverging papilionoid legumes. KEY RESULTS: Formation of sepals and petals shows bidirectional tendencies. Stamens arise in two whorls, and the single carpel arises concomitantly with the outer stamen whorl. Gland formation starts early on the edges of the wing petals. The carpel reopens for a short time when the initiation of ovules is visible. Stomata at the base of the hypanthium indicate that the flower functions like other standard flag blossoms. CONCLUSIONS: The floral ontogeny confirms the close affinity of P. urceoliferum with the florally heterogeneous, early-diverging papilionoid Amburaneae clade. The results strengthen the theory of a distinct experimental phase among early-branching papilionoid legumes during which a wider range of floral morphologies arose. Polysymmetry, monosymmetry, variable organ numbers, and a wide range of ontogenetic patterns laid the foundation for a successful canalization toward the more restricted but well-adapted dorsiventral papilionoid flag blossom.


Assuntos
Fabaceae/anatomia & histologia , Flores/anatomia & histologia , Evolução Biológica , Fabaceae/genética , Fabaceae/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento
19.
PhytoKeys ; 240: 1-552, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38912426

RESUMO

Caesalpinioideae is the second largest subfamily of legumes (Leguminosae) with ca. 4680 species and 163 genera. It is an ecologically and economically important group formed of mostly woody perennials that range from large canopy emergent trees to functionally herbaceous geoxyles, lianas and shrubs, and which has a global distribution, occurring on every continent except Antarctica. Following the recent re-circumscription of 15 Caesalpinioideae genera as presented in Advances in Legume Systematics 14, Part 1, and using as a basis a phylogenomic analysis of 997 nuclear gene sequences for 420 species and all but five of the genera currently recognised in the subfamily, we present a new higher-level classification for the subfamily. The new classification of Caesalpinioideae comprises eleven tribes, all of which are either new, reinstated or re-circumscribed at this rank: Caesalpinieae Rchb. (27 genera / ca. 223 species), Campsiandreae LPWG (2 / 5-22), Cassieae Bronn (7 / 695), Ceratonieae Rchb. (4 / 6), Dimorphandreae Benth. (4 / 35), Erythrophleeae LPWG (2 /13), Gleditsieae Nakai (3 / 20), Mimoseae Bronn (100 / ca. 3510), Pterogyneae LPWG (1 / 1), Schizolobieae Nakai (8 / 42-43), Sclerolobieae Benth. & Hook. f. (5 / ca. 113). Although many of these lineages have been recognised and named in the past, either as tribes or informal generic groups, their circumscriptions have varied widely and changed over the past decades, such that all the tribes described here differ in generic membership from those previously recognised. Importantly, the approximately 3500 species and 100 genera of the former subfamily Mimosoideae are now placed in the reinstated, but newly circumscribed, tribe Mimoseae. Because of the large size and ecological importance of the tribe, we also provide a clade-based classification system for Mimoseae that includes 17 named lower-level clades. Fourteen of the 100 Mimoseae genera remain unplaced in these lower-level clades: eight are resolved in two grades and six are phylogenetically isolated monogeneric lineages. In addition to the new classification, we provide a key to genera, morphological descriptions and notes for all 163 genera, all tribes, and all named clades. The diversity of growth forms, foliage, flowers and fruits are illustrated for all genera, and for each genus we also provide a distribution map, based on quality-controlled herbarium specimen localities. A glossary for specialised terms used in legume morphology is provided. This new phylogenetically based classification of Caesalpinioideae provides a solid system for communication and a framework for downstream analyses of biogeography, trait evolution and diversification, as well as for taxonomic revision of still understudied genera.

20.
Am J Bot ; 100(2): 403-21, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23378491

RESUMO

PREMISE OF STUDY: Flowering traits can sometimes be overemphasized in taxonomic classifications. The fused and completely differentiated papilionate floral organs in the neotropical legume trees Vatairea and Vataireopsis were traditionally used in part to ascribe these genera to the tribe Dalbergieae. In contrast, the free and mostly undifferentiated floral parts of Luetzelburgia and Sweetia fit the circumscription of the "primitive" Sophoreae. Such divergent floral morphologies thought to divide deep phylogenetic lineages indeed may be prone to episodic transformation among close papilionoid relatives. METHODS: We sampled 26 of 27 known species of Luetzelburgia, Sweetia, Vatairea, and Vataireopsis in parsimony and Bayesian phylogenetic analyses of nuclear ribosomal ITS/5.8S and six plastid (matK, 3'-trnK, psbA-trnH, trnL intron, rps16 intron, and trnD-T) DNA sequence loci. KEY RESULTS: The analyses of individual and combined data sets strongly resolved the monophyly of each of Luetzelburgia, Sweetia, Vatairea, and Vataireopsis. Vataireopsis was resolved as sister to the rest and the morphologically divergent Luetzelburgia and Vatairea were strongly resolved as sister clades. Floral morphology was generally not a good predictor of phylogenetic relatedness. CONCLUSIONS: Luetzelburgia, Sweetia, Vatairea, and Vataireopsis are unequivocally resolved as the "vataireoid" clade. Fruit and vegetative traits are found to be more phylogenetically conserved than many floral traits. This explains why the identity of the vataireoids has been overlooked or confused. The evolvability of floral traits may also be a general condition among many of the early-branching papilionoid lineages.


Assuntos
DNA de Cloroplastos/química , Fabaceae/genética , Flores/anatomia & histologia , Filogenia , Evolução Biológica , DNA Intergênico/química , Fabaceae/anatomia & histologia , Fabaceae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA