Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Langmuir ; 40(21): 10856-10867, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38683600

RESUMO

Zwitterionic coatings are an efficient strategy for preventing biomolecule adsorption and enhancing nanoparticle stability in solution. The properties of zwitterions and other antifouling materials, including suppression of nonspecific adsorption and improved colloidal stability of nanoparticles, are believed to derive from their electroneutral and highly hydrophilic nature. Among different zwitterions, short sulfobetaines have been demonstrated to be effective in preventing protein adsorption onto several nanoparticles and providing enhanced colloidal stability. Although zwitterionic sulfobetaine silane (ZS) is electrically neutral, the negatively charged zwitterionic sulfobetaine-functionalized silica nanoparticles (ZS@SiO2NPs) exhibit a similar ζ-potential to nonfunctionalized silica nanoparticles (SiO2NPs). In this work, we present a thorough comprehension of the surface properties of ZS@SiO2NPs, which encompasses the development of meticulous functionalization procedures, detailed characterization approaches, and cutting-edge modeling to address the questions that persist regarding the surface features of ZS@SiO2NPs. The negative charge of ZS@SiO2NPs is due to the stabilization of siloxide from residual surface silanols by the quaternary amine in the sulfobetaine structure. Consequently, we infer that zero-charge ZS@SiO2NPs are unlikely to be obtained since this stabilization increases the dissociation degree of surface silanols, increasing the overall structure negative charge. Additionally, colloidal stability was evaluated in different pH and ionic strength conditions, and it was found that ZS@SiO2NPs are more stable at higher ionic strengths. This suggests that the interaction between ZS and salt ions prevents the aggregation of ZS@SiO2NPs. Together, these results shed light on the nature of the ZS@SiO2NP negative charge and possible sources for the remarkable colloidal stability of zwitterionic nanoparticles in complex media.

2.
Langmuir ; 36(36): 10756-10763, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32787025

RESUMO

Zwitterionic molecules are known to resist nonspecific protein adsorption and have been proposed as an alternative to the widely used polyethylene glycol. Recently, zwitterionic-like nanoparticles were created from the coimmobilization of positive and negative ligands, resulting in surfaces that also prevent protein corona formation while keeping available sites for bioconjugation. However, it is unclear if they are able to keep their original properties when immersed in biological environments while retaining a toxicity-free profile, indispensable features before considering these structures for clinics. Herein, we obtained optimized zwitterionic-like silica nanoparticles from the functionalization with varying ratios of THPMP and DETAPTMS organosilanes and investigated their behavior in realistic biological milieu. The generated zwitterionic-like particle was able to resist single-protein adsorption, while the interaction with a myriad of serum proteins led to significant loss of colloidal stability. Moreover, the zwitterionic particles presented poor hemocompatibility, causing considerable disruption of red blood cells. Our findings suggest that the exposure of ionic groups allows these structures to directly engage with the environment and that electrostatic neutrality is not enough to grant low-fouling and stealth properties.

3.
Langmuir ; 36(39): 11442-11449, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32880180

RESUMO

The outreach of nanoparticle-based medical treatments has been severely hampered due to the imbalance between the efforts in designing extremely complex materials and the general lack of studies devoted to understanding their colloidal stability in biological environments. Over the years, the scientific community has neglected the relevance related to the nanoparticles' colloidal state, which consequently resulted in very poor bench-to-clinic translation. In this work, we show how mesoporous silica nanoparticles (MSNs, one of the most promising and tested drug delivery platforms) can be efficiently synthesized and prepared, resulting in a colloidally stable system. We first compared three distinct methods of template removal of MSNs and evaluated their ultimate colloidal stability. Then, we also proposed a simple way to prevent aggregation during the drying step by adsorbing BSA onto MSNs. The surface modification resulted in colloidally stable particles that are successfully redispersed in biologically relevant medium while retaining high hemocompatibility and low cytotoxicity.

4.
Langmuir ; 32(13): 3217-25, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26930039

RESUMO

The selective action of drugs in tumor cells is a major problem in cancer therapy. Most chemotherapy drugs act nonspecifically and damage both cancer and healthy cells causing various side effects. In this study, the preparation of a selective drug delivery system, which is able to act as a carrier for hydrophobic and anticancer drugs is reported. Amino-functionalized silica nanoparticles loaded with curcumin were successfully synthesized via sol-gel approach and duly characterized. Thereafter, the targeting ligand, folate, was covalently attached to amino groups of nanoparticle surface through amide bond formation. The cytotoxic effect of nanoparticles on prostate cancer cells line was evaluated and compared to normal cells line (prostate epithelial cell). Cytotoxicity experiments demonstrated that folate-functionalized nanoparticles were significantly cytotoxic to tumor cells, whereas normal cells were much less affected by the presence of these structures.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Portadores de Fármacos/síntese química , Nanopartículas/química , Dióxido de Silício/química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Curcumina/toxicidade , Dimetil Sulfóxido , Portadores de Fármacos/toxicidade , Ácido Fólico/análogos & derivados , Ácido Fólico/química , Ácido Fólico/toxicidade , Humanos , Nanopartículas/toxicidade , Tamanho da Partícula , Propilaminas/química , Propilaminas/toxicidade , Dióxido de Silício/síntese química , Dióxido de Silício/toxicidade
5.
Langmuir ; 30(17): 4879-86, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24328925

RESUMO

It is well known that nanomaterials properties and applications are dependent on the size, shape, and morphology of these structures. Among nanomaterials, silver nanoparticles (AgNPs) have attracted attention since they have considerably versatile properties, such as a variable surface area to volume ratio, which is very useful for many biomedical and technological applications. Within this scenario, small nanoparticle aggregates can have their properties reduced due to the increased size and alterations in their shape/morphology. In this work, silver nanoparticles aggregation was studied through chemical reduction of silver nitrate in the presence of sodium borohydride (reducing agent) and sodium citrate (capping agent). By changing the amount of reducing agent along the reaction, unaggregated and partially aggregated samples were obtained and characterized by UV-vis, zeta potential, and SAXS techniques. pH was measured in every step of the reaction in order to correlate these results with those obtained from structural techniques. Addition of the reducing agent first causes the reduction of Ag(+) to silver nanoparticles. For higher concentrations of sodium borohydrate, the average AgNPs size is increased and NPs aggregation is observed. It was found that zeta potential and pH values have a strong influence on AgNPs formation, since reducing agent addition can induce partial removal of citrate weakly associated on the AgNPs surface and increase the ionic strength of the solution, promoting partial aggregation of the particles. This aggregation state was duly identified by coupling SAXS, zeta potential and pH measurements. In addition, the SAXS technique showed that aggregates formed along the process are elongated-like particles due to the exponential decay evidenced through SAXS curves.

6.
Langmuir ; 30(25): 7456-64, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24902085

RESUMO

New and more aggressive antibiotic resistant bacteria arise at an alarming rate and represent an ever-growing challenge to global health care systems. Consequently, the development of new antimicrobial agents is required to overcome the inefficiency of conventional antibiotics and bypass treatment limitations related to these pathologies. In this study, we present a synthesis protocol, which was able to entrap tetracycline antibiotic into silica nanospheres. Bactericidal efficacy of these structures was tested against bacteria that were susceptible and resistant to antibiotics. For nonresistant bacteria, our composite had bactericidal efficiency comparable to that of free-tetracycline. On the other hand, the synthesized composites were able to avoid bacterial growth of resistant bacteria while free-tetracycline has shown no significant bactericidal effect. Finally, we have investigated the cytotoxicity of these nanoparticles against mammalian cells to check any possible poisoning effect. It was found that these nanospheres are not apoptosis-inducers and only a reduction on the cell replication rate was seen when compared to the control without nanoparticles.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Nanopartículas/química , Dióxido de Silício/química , Animais , Antibacterianos/efeitos adversos , Apoptose/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Tetraciclina/efeitos adversos , Tetraciclina/química , Tetraciclina/farmacologia
7.
Chemphyschem ; 14(18): 4075-83, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24323852

RESUMO

Silver-based nanocomposites are known to act as biocides against a series of microorganisms and are largely studied as an alternative to substitute conventional antibiotics that show decreasing efficacy. In this work, an eco-friendly method to synthesize silver nanoparticles assembled on the surface of hexaniobate crystals is reported. By means of ion exchange, K(+) ions of layered potassium hexaniobate were partially substituted by Ag(+) ions and the resulting material was exposed to UV light. The irradiation allowed the reduction of silver ions with consequent formation of silver nanoparticles located only on the hexaniobate surface, whereas Ag(+) ions located in the interlayer space remained in the ionic form. Increasing UV-light exposure times allowed controlling of the silver nanoparticle size. The antibacterial effects of the pristine potassium hexaniobate and of silver-containing hexaniobate samples were tested against Escherichia coli (E. coli). The antibacterial efficacy was determined to be related to the presence of silver in hexaniobate. An increasing activity against E. coli was observed with the decrease in silver nanoparticles size, suggesting that silver nanoparticles of distinct sizes interact differently with bacterial cell walls.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Nanopartículas Metálicas/química , Nióbio/química , Óxidos/química , Potássio/química , Prata/química , Antibacterianos/síntese química , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Escherichia coli/metabolismo , Raios Ultravioleta
8.
ACS Omega ; 8(13): 12154-12164, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033793

RESUMO

The mesoporous SBA-15 material was surface-functionalized with amino and carboxylic acid groups and used as a platform to investigate the interaction of these chemical groups with tetracycline, kanamycin, and ampicillin antibiotics. The interactions between the antibiotic and the functionalized surfaces were characterized using two-dimensional 1H-13C HETCOR CP MAS and FTIR spectroscopy and indicated that -COO- NH3 + bondings had been formed between chemical groups on the silica surface and drug molecules. The surface modification resulted in higher kanamycin and ampicillin loadings and a slow-release rate, and all synthesized systems showed antibacterial activity against susceptible Escherichia coli bacteria. Almost total death of bacteria was obtained using a few ppm of tetracycline- and kanamycin-loaded systems, whereas the ampicillin-loaded one showed lower bactericidal activity than free ampicillin.

9.
ACS Appl Mater Interfaces ; 15(30): 36025-36035, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37467308

RESUMO

Most nanomaterial-based medicines are intravenously applied since oral administration comprises challenging-related biological obstacles, such as interactions with distinct digestive fluids and their transport through the intestinal barrier. Moreover, there is a lack of nanoparticle-based studies that faithfully consider the above-cited obstacles and boost oral-administered nanomedicines' rational design. In this study, the physicochemical stability of fluorescent model silica nanoparticles (f-SiO2NPs) passing through all simulated gastrointestinal fluids (salivary, gastric, and intestinal) and their absorption and transport across a model human intestinal epithelium barrier are investigated. An aggregation/disaggregation f-SiO2NPs process is identified, although these particles remain chemically and physically stable after exposure to digestive fluids. Further, fine imaging of f-SiO2NPs through the absorption and transport across the human intestinal epithelium indicates that nanoparticle transport is time-dependent. The above-presented protocol shows tremendous potential for deciphering fundamental gastrointestinal nanoparticles' evolution and can contribute to rational oral administration-based nanomedicine design.


Assuntos
Líquidos Corporais , Nanopartículas , Humanos , Mucosa Intestinal , Trato Gastrointestinal , Administração Oral
10.
Artigo em Inglês | MEDLINE | ID: mdl-37037205

RESUMO

Drug-resistant bacteria and highly infectious viruses are among the major global threats affecting the human health. There is an immediate need for novel strategies to tackle this challenge. Copper-based nanoparticles (CBNPs) have exhibited a broad antimicrobial capacity and are receiving increasing attention in this context. In this review, we describe the functionalization of CBNPs, elucidate their antibacterial and antiviral activity as well as applications, and briefly review their toxicity, biodistribution, and persistence. The limitations of the current study and potential solutions are also shortly discussed. The review will guide the rational design of functional nanomaterials for antimicrobial application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanopartículas , Humanos , Cobre , Distribuição Tecidual , Antibacterianos/uso terapêutico
11.
J Colloid Interface Sci ; 627: 355-366, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35863194

RESUMO

HYPOTHESIS: Hydrophobicity and the presence or absence of charge in phenol derivatives are relevant on the rheology and phase behavior when they are assembled with a cationic surfactant, forming wormlike micelles. The incorporation of phenols with a greater number of rings into the micellar palisade is entropically favored, but a solubilization limit or coacervation are two paths followed by the solutions, depending on the electrical nature of the aromatic co-solutes. EXPERIMENTS: The investigations were carried out with systems formed by a fixed concentration of hexadecyltrimethylammonium bromide (CTAB) and increasing concentrations of neutral phenols (1-naphthol, 2-naphthol, 2,3-dihydroxynaphthalene and R and S-binol) and with their corresponding phenolate derivatives. The monophasic limits of the systems were established, as well as their linear and non-linear rheology. The structural investigation of the coacervates formed with the phenolates were done using SAXS and Cryo-TEM. FINDINGS: The zero-shear viscosity of the solutions reaches maxima values close to the solubility limit of the aromatics, which depends on the numbers of rings and hydroxyl groups (position and number). However, when the correspondent ionized phenols were investigated, beyond the maxima values for the zero-shear viscosity, liquid-liquid biphasic systems are formed, in which the upper phase contains a coacervate, associated with branched wormlike micelles. However, when the ratio between phenolate and CTAB is around 3:1 the coacervate evolves to a lamellar structure.


Assuntos
Micelas , Fenóis , Cetrimônio , Interações Hidrofóbicas e Hidrofílicas , Fenol , Espalhamento a Baixo Ângulo , Tensoativos/química , Difração de Raios X
12.
ACS Appl Mater Interfaces ; 14(25): 28559-28569, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35696304

RESUMO

Protein corona formation and nanoparticles' aggregation have been heavily discussed over the past years since the lack of fine-mapping of these two combined effects has hindered the targeted delivery evolution and the personalized nanomedicine development. We present a multitechnique approach that combines dynamic light and small-angle X-ray scattering techniques with cryotransmission electron microscopy in a given fashion that efficiently distinguishes protein corona from aggregates formation. This methodology was tested using ∼25 nm model silica nanoparticles incubated with either model proteins or biologically relevant proteomes (such as fetal bovine serum and human plasma) in low and high ionic strength buffers to precisely tune particle-to-protein interactions. In this work, we were able to differentiate protein corona, small aggregates formation, and massive aggregation, as well as obtain fractal information on the aggregates reliably and straightforwardly. The strategy presented here can be expanded to other particle-to-protein mixtures and might be employed as a quality control platform for samples that undergo biological tests.


Assuntos
Nanopartículas , Coroa de Proteína , Humanos , Tamanho da Partícula , Soroalbumina Bovina , Dióxido de Silício
13.
Adv Sci (Weinh) ; 9(20): e2201378, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35543527

RESUMO

Inhibitors of viral cell entry based on poly(styrene sulfonate) and its core-shell nanoformulations based on gold nanoparticles are investigated against a panel of viruses, including clinical isolates of SARS-CoV-2. Macromolecular inhibitors are shown to exhibit the highly sought-after broad-spectrum antiviral activity, which covers most analyzed enveloped viruses and all of the variants of concern for SARS-CoV-2 tested. The inhibitory activity is quantified in vitro in appropriate cell culture models and for respiratory viral pathogens (respiratory syncytial virus and SARS-CoV-2) in mice. Results of this study comprise a significant step along the translational path of macromolecular inhibitors of virus cell entry, specifically against enveloped respiratory viruses.


Assuntos
Tratamento Farmacológico da COVID-19 , Nanopartículas Metálicas , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Ouro , Camundongos , SARS-CoV-2 , Internalização do Vírus
14.
Nanoscale Horiz ; 6(11): 842-855, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34382995

RESUMO

The global pandemic scenario has definitely pushed the scientific community to develop COVID-19 vaccines at unprecedented speed. Nevertheless, a worldwide vaccination campaign is still far from being achieved, making the usual precautionary measures as necessary as at the beginning of the outbreak. Many aspects of the SARS-CoV-2 infectious potential and disease severity do not solely rely on interactions at the molecular level but also on physical-chemical parameters that often involve nanoscale effects. Here the SARS-CoV-2 journey to infect a susceptible host is reviewed, focusing on the nanoscale aspects that play a role in the viral infectivity and disease progression. These nanoscale-driven interactions are essential to establish mitigation-related strategies.


Assuntos
COVID-19 , Vacinas contra COVID-19 , Humanos , Programas de Imunização , Pandemias/prevenção & controle , SARS-CoV-2
15.
Nanoscale ; 13(2): 753-762, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33232428

RESUMO

Freeze-drying of nanoparticle suspensions is capable of generating stable nanoformulations with improved storage times and easier transportation. Nonetheless, nanoparticle aggregation is likely induced during freeze-drying, which reduces its redispersibility upon reconstitution and leads to undesirable effects such as non-specific toxicity and impaired efficacy. In this work, bovine serum albumin (BSA) is described as a suitable protectant for silica nanoparticles (SNPs), which result in solid structures with excellent redispersibility and negligible signs of aggregation even when longer storage times are considered. We experimentally demonstrated that massive system aggregation can be prevented when a saturated BSA corona around the nanoparticle is formed before the lyophilization process. Furthermore, the BSA corona is able to suppress non-specific interactions between these nanoparticles and biological systems, as evidenced by the lack of residual cytotoxicity, hemolytic activity and opsonin adsorption. Hence, BSA can be seriously considered for industry as an additive for nanoparticle freeze-drying since it generates solid and redispersible nanoformulations with improved biocompatibility.


Assuntos
Nanopartículas , Coroa de Proteína , Adsorção , Estabilidade de Medicamentos , Liofilização , Proteínas Opsonizantes , Tamanho da Partícula
16.
Colloids Surf B Biointerfaces ; 186: 110677, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31812075

RESUMO

Silica nanoparticles present an enormous potential as controlled drug delivery systems with high selectivity towards diseased cells. This application is directly related to the phenomenon of protein corona, characterized by the spontaneous adsorption of proteins on the nanoparticle surface, which is not fully understood. Here, we report an investigation on the influence of pH, ionic strength and temperature on the thermodynamics of interaction of bovine serum albumin protein (BSA) with non-functionalized silica nanoparticles (SiO2NPs). Complementary, we also investigated the ability of polyethylene glycol (PEG) and zwitterionic sulfobetaine (SBS) surface-modified nanoparticles to prevent the adsorption of BSA (protein negatively charged at physiological pH) and lysozyme (protein positively charged at physiological pH). We showed that BSA interaction with SiO2NPs is enthalpically governed. On the other hand, functionalization of silica nanoparticles with PEG and SBS completely prevented BSA adsorption. However, these functionalized nanoparticles presented a negative zeta potential and were not able to suppress lysozyme anchoring due to strong nanoparticle-protein electrostatic attraction. Due to the similarity of BSA with Human Serum Albumin, this investigation bears a resemblance to processes involved in the phenomenon of protein corona in human blood, producing information that is relevant for the future biomedical use of functionalized nanoparticles.


Assuntos
Muramidase/química , Nanopartículas/química , Soroalbumina Bovina/química , Dióxido de Silício/química , Adsorção , Animais , Bovinos , Muramidase/metabolismo , Tamanho da Partícula , Soluções , Propriedades de Superfície
17.
Toxicol In Vitro ; 63: 104723, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31740374

RESUMO

In recent years, much attention has been given to nanoparticles (NPs) due to their many possible applications, and as research has progressed, these NPs have become valuable tools for medical purposes. Among many different types of NPs, silica nanoparticles (SiO2NPs) have been specifically evaluated for medical purposes and have also been used in many different types of products. Although SiO2NPs have already been applied and are believed to be nontoxic, there is still a concern regarding possible adverse effects that may be triggered after SiO2NP exposure. Therefore, in the present study, we employed a recommended cell line (BALB/c 3T3) for the toxicity evaluation to investigate the cytotoxic effects of SiO2NPs produced by chemical synthesis at a laboratory scale. First, we employed OECD guideline 129 in order to evaluate cytotoxicity effects and also estimate the starting doses for acute oral systemic toxicity tests. We evaluated the cytotoxic effects of two types of SiO2NPs (nonfluorescent and fluorescent) and found that they were not significantly different (IC50 = 1986.39 ± 237 µg/mL and IC50 = 1861.13 ± 186.72 µg/mL, respectively). Then, we used the predicted LD50 of both types of SiO2NPs to suggest that they could be categorized as GHS category 4 substances. By ultrastructural evaluation, we found that SiO2NPs are internalized by 3 T3 cells and are located in vacuole-like structures with no other significant changes in cell structure. We also found that SiO2NPs lead to cell necrosis in a dose-dependent manner.


Assuntos
Nanopartículas/toxicidade , Necrose/induzido quimicamente , Dióxido de Silício/toxicidade , Animais , Células 3T3 BALB , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Camundongos , Nanopartículas/ultraestrutura
19.
ACS Appl Mater Interfaces ; 10(49): 41917-41923, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30426737

RESUMO

Protein coronas form on the surfaces of nanomaterials in biological fluids. This layer of proteins affects the properties of nanomaterials, altering their behavior and masking engineered functionality. The use of nonfouling moieties reduces or prevents corona formation; however, these ligands typically complicate functionalization. We present here a surface modification strategy for silica nanoparticles using specific molar ratios of zwitterionic and amine moieties. Through proper balance of ligands, we were able to generate particles that featured reactive "handles", while retaining nonfouling properties, high hemocompatibility, and low cytotoxicity.


Assuntos
Teste de Materiais , Nanopartículas/química , Coroa de Proteína/química , Dióxido de Silício , Animais , Humanos , Camundongos , Células NIH 3T3 , Dióxido de Silício/metabolismo , Dióxido de Silício/farmacologia
20.
Nanomedicine (Lond) ; 13(14): 1731-1751, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30074435

RESUMO

Aim: Polyether pores were designed and tetracycline-loaded mesoporous silica materials, with their surface decorated by silver ions, were prepared, with the aim of reaching high antibacterial activity. Meanwhile, mammalian cell cytotoxicity and hemolytic effects were not observed using material concentrations tenfold the ones optimized for the bactericidal tests. Methods: Pore size was tuned by changing the polyether content and the surface was covalently decorated with silver thiolate groups. Results: We showed that the biological activity was enhanced by modulating silver ions and tetracycline releases by tuning silver thiolate group concentration on the silica surface and/or by modulating the pH of the environment. Conclusion: The combined use of tetracycline and silver ions with the mesoporous drug-delivery carrier was a very effective strategy against susceptible and tetracycline-resistant Escherichia coli bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA