Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809317

RESUMO

Recently, studies on cycling-based brain-computer interfaces (BCIs) have been standing out due to their potential for lower-limb recovery. In this scenario, the behaviors of the sensory motor rhythms and the brain connectivity present themselves as sources of information that can contribute to interpreting the cortical effect of these technologies. This study aims to analyze how sensory motor rhythms and cortical connectivity behave when volunteers command reactive motor imagery (MI) BCI that provides passive pedaling feedback. We studied 8 healthy subjects who performed pedaling MI to command an electroencephalography (EEG)-based BCI with a motorized pedal to receive passive movements as feedback. The EEG data were analyzed under the following four conditions: resting, MI calibration, MI online, and receiving passive pedaling (on-line phase). Most subjects produced, over the foot area, significant event-related desynchronization (ERD) patterns around Cz when performing MI and receiving passive pedaling. The sharpest decrease was found for the low beta band. The connectivity results revealed an exchange of information between the supplementary motor area (SMA) and parietal regions during MI and passive pedaling. Our findings point to the primary motor cortex activation for most participants and the connectivity between SMA and parietal regions during pedaling MI and passive pedaling.


Assuntos
Interfaces Cérebro-Computador , Excitabilidade Cortical , Córtex Motor , Eletroencefalografia , Humanos , Imaginação
2.
Res. Biomed. Eng. (Online) ; 33(4): 293-300, Oct.-Dec. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-896201

RESUMO

Abstract Introduction: Stroke is a leading cause of neuromuscular system damages, and researchers have been studying and developing robotic devices to assist affected people. Depending on the damage extension, the gait of these people can be impaired, making devices, such as smart walkers, useful for rehabilitation. The goal of this work is to analyze changes in muscle patterns on the paretic limb during free and walker-assisted gaits in stroke individuals, through accelerometry and surface electromyography (sEMG). Methods The analyzed muscles were vastus medialis, biceps femoris, tibialis anterior and gastrocnemius medialis. The volunteers walked three times on a straight path in free gait and, further, three times again, but now using the smart walker, to help them with the movements. Then, the data from gait pattern and muscle signals collected by sEMG and accelerometers were analyzed and statistical analyses were applied. Results The accelerometry allowed gait phase identification (stance and swing), and sEMG provided information about muscle pattern variations, which were detected in vastus medialis (onset and offset; p = 0.022) and biceps femoris (offset; p = 0.025). Additionally, comparisons between free and walker-assisted gaits showed significant reduction in speed (from 0.45 to 0.30 m/s; p = 0.021) and longer stance phase (from 54.75 to 60.34%; p = 0.008). Conclusions Variations in muscle patterns were detected in vastus medialis and biceps femoris during the experiments, besides user speed reduction and longer stance phase when the walker-assisted gait is compared with the free gait.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA