Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 26(7): 2818-30, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25082855

RESUMO

Although Ca transport in plants is highly complex, the overexpression of vacuolar Ca(2+) transporters in crops is a promising new technology to improve dietary Ca supplies through biofortification. Here, we sought to identify novel targets for increasing plant Ca accumulation using genetical and comparative genomics. Expression quantitative trait locus (eQTL) mapping to 1895 cis- and 8015 trans-loci were identified in shoots of an inbred mapping population of Brassica rapa (IMB211 × R500); 23 cis- and 948 trans-eQTLs responded specifically to altered Ca supply. eQTLs were screened for functional significance using a large database of shoot Ca concentration phenotypes of Arabidopsis thaliana. From 31 Arabidopsis gene identifiers tagged to robust shoot Ca concentration phenotypes, 21 mapped to 27 B. rapa eQTLs, including orthologs of the Ca(2+) transporters At-CAX1 and At-ACA8. Two of three independent missense mutants of BraA.cax1a, isolated previously by targeting induced local lesions in genomes, have allele-specific shoot Ca concentration phenotypes compared with their segregating wild types. BraA.CAX1a is a promising target for altering the Ca composition of Brassica, consistent with prior knowledge from Arabidopsis. We conclude that multiple-environment eQTL analysis of complex crop genomes combined with comparative genomics is a powerful technique for novel gene identification/prioritization.


Assuntos
Arabidopsis/genética , Brassica/genética , Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Genoma de Planta/genética , Genômica/métodos , Arabidopsis/metabolismo , Brassica/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Mapeamento Cromossômico , Produtos Agrícolas , Regulação da Expressão Gênica de Plantas , Interação Gene-Ambiente , Mutação de Sentido Incorreto , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Locos de Características Quantitativas/genética , Vacúolos/metabolismo
2.
J Integr Plant Biol ; 54(5): 345-55, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22494395

RESUMO

Associating phenotypic traits and quantitative trait loci (QTL) to causative regions of the underlying genome is a key goal in agricultural research. InterStoreDB is a suite of integrated databases designed to assist in this process. The individual databases are species independent and generic in design, providing access to curated datasets relating to plant populations, phenotypic traits, genetic maps, marker loci and QTL, with links to functional gene annotation and genomic sequence data. Each component database provides access to associated metadata, including data provenance and parameters used in analyses, thus providing users with information to evaluate the relative worth of any associations identified. The databases include CropStoreDB, for management of population, genetic map, QTL and trait measurement data, SeqStoreDB for sequence-related data and AlignStoreDB, which stores sequence alignment information, and allows navigation between genetic and genomic datasets. Genetic maps are visualized and compared using the CMAP tool, and functional annotation from sequenced genomes is provided via an EnsEMBL-based genome browser. This framework facilitates navigation of the multiple biological domains involved in genetics and genomics research in a transparent manner within a single portal. We demonstrate the value of InterStoreDB as a tool for Brassica research. InterStoreDB is available from: http://www.interstoredb.org.


Assuntos
Bases de Dados Genéticas , Genômica , Software , Brassica/genética , Produtos Agrícolas/genética , Genes de Plantas/genética , Locos de Características Quantitativas/genética , Alinhamento de Sequência
3.
BMC Genomics ; 12: 101, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21306613

RESUMO

BACKGROUND: The large number of genetic linkage maps representing Brassica chromosomes constitute a potential platform for studying crop traits and genome evolution within Brassicaceae. However, the alignment of existing maps remains a major challenge. The integration of these genetic maps will enhance genetic resolution, and provide a means to navigate between sequence-tagged loci, and with contiguous genome sequences as these become available. RESULTS: We report the first genome-wide integration of Brassica maps based on an automated pipeline which involved collation of genome-wide genotype data for sequence-tagged markers scored on three extensively used amphidiploid Brassica napus (2n = 38) populations. Representative markers were selected from consolidated maps for each population, and skeleton bin maps were generated. The skeleton maps for the three populations were then combined to generate an integrated map for each LG, comparing two different approaches, one encapsulated in JoinMap and the other in MergeMap. The BnaWAIT_01_2010a integrated genetic map was generated using JoinMap, and includes 5,162 genetic markers mapped onto 2,196 loci, with a total genetic length of 1,792 cM. The map density of one locus every 0.82 cM, corresponding to 515 Kbp, increases by at least three-fold the locus and marker density within the original maps. Within the B. napus integrated map we identified 103 conserved collinearity blocks relative to Arabidopsis, including five previously unreported blocks. The BnaWAIT_01_2010a map was used to investigate the integrity and conservation of order proposed for genome sequence scaffolds generated from the constituent A genome of Brassica rapa. CONCLUSIONS: Our results provide a comprehensive genetic integration of the B. napus genome from a range of sources, which we anticipate will provide valuable information for rapeseed and Canola research.


Assuntos
Arabidopsis/genética , Brassica napus/genética , Brassica rapa/genética , Mapeamento Cromossômico , Ligação Genética/genética , Genoma de Planta/genética , Genótipo
4.
J Pathog ; 2011: 626345, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22567335

RESUMO

Fusarium Ear Blight is a destructive fungal disease of cereals including wheat and can contaminate the crop with various trichothecene mycotoxins. This investigation has produced a new ß-glucuronidase (GUS) reporter strain that facilitates the quick and easy assessment of plant infection. The constitutively expressed gpdA:GUS strain of Fusarium graminearum was used to quantify the overall colonisation pattern. Histochemical and biochemical approaches confirmed, in susceptible wheat ear infections, the presence of a substantial phase of symptomless fungal growth. Separate analyses demonstrated that there was a reduction in the quantity of physiologically active hyphae as the wheat ear infection proceeded. A simplified linear system of rachis infection was then utilised to evaluate the expression of several TRI genes by RT-qPCR. Fungal gene expression at the advancing front of symptomless infection was compared with the origin of infection in the rachis. This revealed that TRI gene expression was maximal at the advancing front and supports the hypothesis that the mycotoxin deoxynivalenol plays a role in inhibiting plant defences in advance of the invading intercellular hyphae. This study has also demonstrated that there are transcriptional differences between the various phases of fungal infection and that these differences are maintained as the infection proceeds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA