Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mater Sci Eng C Mater Biol Appl ; 78: 457-466, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28576009

RESUMO

Superparamagnetic magnetite nanoparticles have been synthesized by a highly reproducible polyvinyl alcohol (PVA)-based modified sol-gel process using water as the only solvent. The synthesis method has proven to be effective, time and cost saving and environmental friendly, resulting in PVA-coated magnetite nanoparticles as direct product from the synthesis, without any special atmosphere or further thermal treatment. X-ray diffraction and transmission electron microscopy revealed that the biocompatible PVA-coating prevents the nanoparticle agglomeration, giving rise to spherical crystals with sizes of 6.8nm (as-cast) and 9.5nm (heat treated) with great control over size and shape with narrow size distribution. Complementary compositional and magnetic characterizations were employed in order to study the surface chemistry and magnetic behavior of the samples, respectively. Cytotoxicity endpoints including no observed adverse effect concentration (NOAEC), 50% lethal concentration (LC50) and total lethal concentration (TLC) of the tested materials on cell viability were determined after 3, 24 and 48h of exposure. The PVA coating improved the biocompatibility of the synthesized magnetite nanoparticles showing good cell viability and low cytotoxicity effects on the MTT assay performed on BHK cells. Preliminary assessment of nanoparticles in vivo effects, performed after 48h on Balb/c mice, exposed to a range of different sub-lethal doses, showed their capacity to penetrate in liver and kidneys with no significant morphological alterations in both organs.


Assuntos
Nanopartículas de Magnetita , Animais , Magnetismo , Microscopia Eletrônica de Transmissão , Álcool de Polivinil , Difração de Raios X
2.
Braz J Med Biol Res ; 38(6): 813-23, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15933774

RESUMO

Enveloped viruses always gain entry into the cytoplasm by fusion of their lipid envelope with a cell membrane. Some enveloped viruses fuse directly with the host cell plasma membrane after virus binding to the cell receptor. Other enveloped viruses enter the cells by the endocytic pathway, and fusion depends on the acidification of the endosomal compartment. In both cases, virus-induced membrane fusion is triggered by conformational changes in viral envelope glycoproteins. Two different classes of viral fusion proteins have been described on the basis of their molecular architecture. Several structural data permitted the elucidation of the mechanisms of membrane fusion mediated by class I and class II fusion proteins. In this article, we review a number of results obtained by our laboratory and by others that suggest that the mechanisms involved in rhabdovirus fusion are different from those used by the two well-studied classes of viral glycoproteins. We focus our discussion on the electrostatic nature of virus binding and interaction with membranes, especially through phosphatidylserine, and on the reversibility of the conformational changes of the rhabdovirus glycoprotein involved in fusion. Taken together, these data suggest the existence of a third class of fusion proteins and support the idea that new insights should emerge from studies of membrane fusion mediated by the G protein of rhabdoviruses. In particular, the elucidation of the three-dimensional structure of the G protein or even of the fusion peptide at different pH's might provide valuable information for understanding the fusion mechanism of this new class of fusion proteins.


Assuntos
Glicoproteínas/fisiologia , Fusão de Membrana/fisiologia , Rhabdoviridae/fisiologia , Proteínas Virais de Fusão/fisiologia , Animais , Proteínas de Ligação ao GTP/fisiologia , Histidina/fisiologia , Humanos , Glicoproteínas de Membrana/fisiologia , Fosfatidilserinas/fisiologia
3.
J Neurol ; 208(4): 267-77, 1975.
Artigo em Inglês | MEDLINE | ID: mdl-50412

RESUMO

60 cases of bilateral cerebellopontine angle pantopaque cisternography done between May, 1972, and April, 1974, are reported. Of these, 9 showed a unilateral acoustic neurinoma of different sizes, 1 showed a bilateral acoustic neurinoma all confirmed by operation. Technical details and advantages of the procedure are discussed. There were no complications related to the procedure.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Ângulo Cerebelopontino , Cisterna Magna/diagnóstico por imagem , Adulto , Idoso , Feminino , Humanos , Iodofendilato , Masculino , Métodos , Pessoa de Meia-Idade , Neurilemoma/diagnóstico por imagem , Radiografia , Nervo Vestibulococlear
4.
Protein Pept Lett ; 16(7): 779-85, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19601907

RESUMO

Membrane fusion is an essential step in the entry of enveloped viruses into their host cells, what makes it a potentially attractive target for viral inactivation approaches. Fusion is mediated by viral surface glycoproteins that undergo conformational changes triggered by interaction with specific cellular receptors or by the exposition to low pH of endossomal medium. Here we review how several studies on the structural rearrangements of vesicular stomatitis virus (VSV) glycoprotein G during cellular recognition and fusion led us to propose a crucial role of the protonation of His residues for G protein activity. Moreover, we demonstrated that using diethylpyrocarbonate (DEPC), a histidine-modifying compound, it was possible to abolish viral infectivity and pathogenicity in mice, and to elicit neutralizing antibodies that confer protection in these animals against challenge using lethal doses of the virus. The presence of conserved His residues in a wide range of viral fusion proteins and the use of DEPC as a more general means for vaccine development will be also discussed.


Assuntos
Histidina/metabolismo , Fusão de Membrana , Prótons , Vacinas Virais/imunologia , Inativação de Vírus , Internalização do Vírus , Animais , Humanos , Concentração de Íons de Hidrogênio , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Vírus da Estomatite Vesicular Indiana/imunologia , Vírus da Estomatite Vesicular Indiana/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo
5.
J Biol Chem ; 276(1): 62-7, 2001 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-11024041

RESUMO

Membrane fusion is the key step in the entry of enveloped animal viruses into their host cells. Fusion of vesicular stomatitis virus with membranes occurs at acidic pH and is mediated by its envelope glycoprotein, the G protein. To study the structural transitions induced by acidic pH on G protein, we have extracted the protein from purified virus by incubation with nonionic detergent. At pH 6.0, purified G protein was able to mediate fusion of either phospholipid vesicles or Vero cells in culture. Intrinsic fluorescence studies revealed that changes in the environment of Trp residues occurred as pH decreases. In the absence of lipidic membranes, acidification led to G protein aggregation, whereas protein-protein interactions were substituted by protein-lipid interactions in the presence of liposomes. 1,1'-Bis(4-aniline-5-naphthalene sulfonate) (bis-ANS) binding was utilized to probe the degree of exposure of hydrophobic regions of G protein during acidification. Bis-ANS binding was maximal at pH 6.2, suggesting that a hydrophobic segment is exposed to the medium at this pH. At pH 6.0, a dramatic decrease in bis-ANS binding was observed, probably due to loss of tridimensional structure during the conformational rearrangement. This hypothesis was confirmed by circular dichroism analysis at different pH values, which showed a great decrease in alpha-helix content at pH values close to 6.0, suggesting that a reorganization of G protein secondary structure occurs during the fusion reaction. Our results indicate that G protein undergoes dramatic structural changes at acidic pH and acquires a conformational state able to interact with the target membrane.


Assuntos
Glicoproteínas/química , Glicoproteínas de Membrana , Proteínas do Envelope Viral/química , Naftalenossulfonato de Anilina/metabolismo , Animais , Fusão Celular , Chlorocebus aethiops , Dicroísmo Circular , Glicoproteínas/isolamento & purificação , Glicoproteínas/metabolismo , Glicoproteínas/farmacologia , Concentração de Íons de Hidrogênio , Lipossomos/metabolismo , Fusão de Membrana/efeitos dos fármacos , Ligação Proteica , Estrutura Secundária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/efeitos dos fármacos , Espectrometria de Fluorescência , Triptofano/química , Células Vero , Proteínas do Envelope Viral/isolamento & purificação , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/farmacologia
6.
Braz. j. med. biol. res ; 38(6): 813-823, June 2005. ilus, tab
Artigo em Inglês | LILACS | ID: lil-402669

RESUMO

Enveloped viruses always gain entry into the cytoplasm by fusion of their lipid envelope with a cell membrane. Some enveloped viruses fuse directly with the host cell plasma membrane after virus binding to the cell receptor. Other enveloped viruses enter the cells by the endocytic pathway, and fusion depends on the acidification of the endosomal compartment. In both cases, virus-induced membrane fusion is triggered by conformational changes in viral envelope glycoproteins. Two different classes of viral fusion proteins have been described on the basis of their molecular architecture. Several structural data permitted the elucidation of the mechanisms of membrane fusion mediated by class I and class II fusion proteins. In this article, we review a number of results obtained by our laboratory and by others that suggest that the mechanisms involved in rhabdovirus fusion are different from those used by the two well-studied classes of viral glycoproteins. We focus our discussion on the electrostatic nature of virus binding and interaction with membranes, especially through phosphatidylserine, and on the reversibility of the conformational changes of the rhabdovirus glycoprotein involved in fusion. Taken together, these data suggest the existence of a third class of fusion proteins and support the idea that new insights should emerge from studies of membrane fusion mediated by the G protein of rhabdoviruses. In particular, the elucidation of the three-dimensional structure of the G protein or even of the fusion peptide at different pH's might provide valuable information for understanding the fusion mechanism of this new class of fusion proteins.


Assuntos
Animais , Humanos , Glicoproteínas/fisiologia , Fusão de Membrana/fisiologia , Rhabdoviridae/fisiologia , Proteínas Virais de Fusão/fisiologia , Proteínas de Ligação ao GTP/fisiologia , Histidina/fisiologia , Glicoproteínas de Membrana/fisiologia , Fosfatidilserinas/fisiologia
10.
J. pediatr. (Rio J.) ; 56(5): 279-88, passim, 1984.
Artigo em Português | LILACS | ID: lil-23071

RESUMO

Os autores apresentam 17 casos de complicacao de miningite bacteriana, avaliados atraves da tomografia axial computadorizada do encefalo, exaltando o valor e a importancia deste exame tanto na precisao diagnostica como na evolucao e criterio de cura. As complicacoes de meningite bacteriana mais frequentes foram: abscesso cerebral; colecao subdural; hidrocefalia e cerebrite


Assuntos
Lactente , Pré-Escolar , Humanos , Masculino , Feminino , Meningite , Tomografia Computadorizada por Raios X
11.
Rev. paul. med ; 100(2): 8-10, 1982.
Artigo em Português | LILACS | ID: lil-10930

RESUMO

Foi estudada em caes a acao antiarritmica de metoclopramida (Plasil) em arritmias experimentais causadas por doses toxicas de desacetil-lanatosideo C e de digitoxina Foi realizada comparacao entre a metoclopramida e a fenil-hidantoina em arritmias causadas pela digitoxina. Os resultados mostram que a metoclopramida antagonizou com eficacia as arritmias causadas pelo desacetil-lanatosideo C e reverteu temporariamente, na maioria das experienicas, aquelas decorrentes da administracao de digitoxinas. Ja a definil-hidantoina nao exerceu acao antiarritmica na maioria dos caes estudados


Assuntos
Animais , Cães , Arritmias Cardíacas , Deslanosídeo , Digitoxina , Metoclopramida , Fenitoína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA