Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Planta ; 248(3): 691-704, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29948124

RESUMO

MAIN CONCLUSION: Red light is able to compensate for deleterious effects of microgravity on root cell growth and proliferation. Partial gravity combined with red light produces differential signals during the early plant development. Light and gravity are environmental cues used by plants throughout evolution to guide their development. We have investigated the cross-talk between phototropism and gravitropism under altered gravity in space. The focus was on the effects on the meristematic balance between cell growth and proliferation, which is disrupted under microgravity in the dark. In our spaceflight experiments, seedlings of three Arabidopsis thaliana genotypes, namely the wild type and mutants of phytochrome A and B, were grown for 6 days, including red-light photoactivation for the last 2 days. Apart from the microgravity and the 1g on-board control conditions, fractional gravity (nominally 0.1g, 0.3g, and 0.5g) was created with on-board centrifuges. In addition, a simulated microgravity (random positioning machine, RPM) experiment was performed on ground, including both dark-grown and photostimulated samples. Photoactivated samples in spaceflight and RPM experiments showed an increase in the root length consistent with phototropic response to red light, but, as gravity increased, a gradual decrease in this response was observed. Uncoupling of cell growth and proliferation was detected under microgravity in darkness by transcriptomic and microscopic methods, but red-light photoactivation produced a significant reversion. In contrast, the combination of red light and partial gravity produced small but consistent variations in the molecular markers of cell growth and proliferation, suggesting an antagonistic effect between light and gravity signals at the early plant development. Understanding these parameters of plant growth and development in microgravity will be important as bioregenerative life support systems for the colonization of the Moon and Mars.


Assuntos
Meristema/citologia , Raízes de Plantas/citologia , Ausência de Peso , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Perfilação da Expressão Gênica , Gravitropismo , Luz , Meristema/crescimento & desenvolvimento , Meristema/efeitos da radiação , Microscopia , Fototropismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos da radiação , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Simulação de Ausência de Peso
2.
NPJ Microgravity ; 10(1): 16, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341423

RESUMO

Progress in mechanobiology allowed us to better understand the important role of mechanical forces in the regulation of biological processes. Space research in the field of life sciences clearly showed that gravity plays a crucial role in biological processes. The space environment offers the unique opportunity to carry out experiments without gravity, helping us not only to understand the effects of gravitational alterations on biological systems but also the mechanisms underlying mechanoperception and cell/tissue response to mechanical and gravitational stresses. Despite the progress made so far, for future space exploration programs it is necessary to increase our knowledge on the mechanotransduction processes as well as on the molecular mechanisms underlying microgravity-induced cell and tissue alterations. This white paper reports the suggestions and recommendations of the SciSpacE Science Community for the elaboration of the section of the European Space Agency roadmap "Biology in Space and Analogue Environments" focusing on "How are cells and tissues influenced by gravity and what are the gravity perception mechanisms?" The knowledge gaps that prevent the Science Community from fully answering this question and the activities proposed to fill them are discussed.

3.
NPJ Microgravity ; 10(1): 50, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693246

RESUMO

Periodically, the European Space Agency (ESA) updates scientific roadmaps in consultation with the scientific community. The ESA SciSpacE Science Community White Paper (SSCWP) 9, "Biology in Space and Analogue Environments", focusses in 5 main topic areas, aiming to address key community-identified knowledge gaps in Space Biology. Here we present one of the identified topic areas, which is also an unanswered question of life science research in Space: "How to Obtain an Integrated Picture of the Molecular Networks Involved in Adaptation to Microgravity in Different Biological Systems?" The manuscript reports the main gaps of knowledge which have been identified by the community in the above topic area as well as the approach the community indicates to address the gaps not yet bridged. Moreover, the relevance that these research activities might have for the space exploration programs and also for application in industrial and technological fields on Earth is briefly discussed.

4.
NPJ Microgravity ; 9(1): 67, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604914

RESUMO

Advancements in plant space biology are required for the realization of human space exploration missions, where the re-supply of resources from Earth is not feasible. Until a few decades ago, space life science was focused on the impact of the space environment on the human body. More recently, the interest in plant space biology has increased because plants are key organisms in Bioregenerative Life Support Systems (BLSS) for the regeneration of resources and fresh food production. Moreover, plants play an important role in psychological support for astronauts. The definition of cultivation requirements for the design, realization, and successful operation of BLSS must consider the effects of space factors on plants. Altered gravitational fields and radiation exposure are the main space factors inducing changes in gene expression, cell proliferation and differentiation, signalling and physiological processes with possible consequences on tissue organization and organogenesis, thus on the whole plant functioning. Interestingly, the changes at the cellular and molecular levels do not always result in organismic or developmental changes. This apparent paradox is a current research challenge. In this paper, the main findings of gravity- and radiation-related research on higher plants are summarized, highlighting the knowledge gaps that are still necessary to fill. Existing experimental facilities to simulate the effect of space factors, as well as requirements for future facilities for possible experiments to achieve fundamental biology goals are considered. Finally, the need for making synergies among disciplines and for establishing global standard operating procedures for analyses and data collection in space experiments is highlighted.

5.
NPJ Microgravity ; 9(1): 69, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620398

RESUMO

Long-term human space exploration missions require environmental control and closed Life Support Systems (LSS) capable of producing and recycling resources, thus fulfilling all the essential metabolic needs for human survival in harsh space environments, both during travel and on orbital/planetary stations. This will become increasingly necessary as missions reach farther away from Earth, thereby limiting the technical and economic feasibility of resupplying resources from Earth. Further incorporation of biological elements into state-of-the-art (mostly abiotic) LSS, leading to bioregenerative LSS (BLSS), is needed for additional resource recovery, food production, and waste treatment solutions, and to enable more self-sustainable missions to the Moon and Mars. There is a whole suite of functions crucial to sustain human presence in Low Earth Orbit (LEO) and successful settlement on Moon or Mars such as environmental control, air regeneration, waste management, water supply, food production, cabin/habitat pressurization, radiation protection, energy supply, and means for transportation, communication, and recreation. In this paper, we focus on air, water and food production, and waste management, and address some aspects of radiation protection and recreation. We briefly discuss existing knowledge, highlight open gaps, and propose possible future experiments in the short-, medium-, and long-term to achieve the targets of crewed space exploration also leading to possible benefits on Earth.

6.
iScience ; 26(9): 107289, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37636054

RESUMO

Following on from the NASA twins' study, there has been a tremendous interest in the use of omics techniques in spaceflight. Individual space agencies, NASA's GeneLab, JAXA's ibSLS, and the ESA-funded Space Omics Topical Team and the International Standards for Space Omics Processing (ISSOP) groups have established several initiatives to support this growth. Here, we present recommendations from the Space Omics Topical Team to promote standard application of space omics in Europe. We focus on four main themes: i) continued participation in and coordination with international omics endeavors, ii) strengthening of the European space omics infrastructure including workforce and facilities, iii) capitalizing on the emerging opportunities in the commercial space sector, and iv) capitalizing on the emerging opportunities in human subjects research.

7.
NPJ Microgravity ; 9(1): 84, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865644

RESUMO

The present white paper concerns the indications and recommendations of the SciSpacE Science Community to make progress in filling the gaps of knowledge that prevent us from answering the question: "How Do Gravity Alterations Affect Animal and Human Systems at a Cellular/Tissue Level?" This is one of the five major scientific issues of the ESA roadmap "Biology in Space and Analogue Environments". Despite the many studies conducted so far on spaceflight adaptation mechanisms and related pathophysiological alterations observed in astronauts, we are not yet able to elaborate a synthetic integrated model of the many changes occurring at different system and functional levels. Consequently, it is difficult to develop credible models for predicting long-term consequences of human adaptation to the space environment, as well as to implement medical support plans for long-term missions and a strategy for preventing the possible health risks due to prolonged exposure to spaceflight beyond the low Earth orbit (LEO). The research activities suggested by the scientific community have the aim to overcome these problems by striving to connect biological and physiological aspects in a more holistic view of space adaptation effects.

8.
iScience ; 25(8): 104687, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35856037

RESUMO

Discovering the adaptation mechanisms of plants to the space environment is essential for supporting human space exploration. Transcriptomic analyses allow the identification of adaptation response pathways by detecting changes in gene expression at the global genome level caused by the main factors of the space environment, namely altered gravity and cosmic radiation. This article reviews transcriptomic studies carried out from plants grown in spaceflights and in different ground-based microgravity simulators. Despite differences in plant growth conditions, these studies have shown that cell wall remodeling, oxidative stress, defense response, and photosynthesis are common altered processes in plants grown under spaceflight conditions. European scientists have significantly contributed to the acquisition of this knowledge, e.g., by showing the role of red light in the adaptation response of plants (EMCS experiments) and the mechanisms of cellular response and adaptation mostly affecting cell cycle regulation, using cell cultures in microgravity simulators.

9.
Physiol Plant ; 134(1): 191-201, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18429941

RESUMO

The GRAVI-1 experiment was brought on board the International Space Station by Discovery (December 2006) and carried out in January 2007 in the European Modular Cultivation System facility. For the first run of this experiment, lentil seedlings were hydrated and grown in microgravity for 15 h and then subjected for 13 h 40 min to centrifugal accelerations ranging from 0.29 x 10(-2) g to 0.99 x 10(-2) g. During the second run, seedlings were grown either for 30 h 30 min in microgravity (this sample was the control) or for 21 h 30 min and then subjected to centrifugal accelerations ranging from 1.2 x 10(-2) g to 2.0 x 10(-2) g for 9 h. In both cases, root orientation and root curvature were followed by time-lapse photography. Still images were downlinked in near real time to ground Norwegian User Support and Operations Center during the experiment. The position of the root tip and the root curvature were analyzed as a function of time. It has been shown that in microgravity, the embryonic root curved strongly away from the cotyledons (automorphogenesis) and then straightened out slowly from 17 to 30 h following hydration (autotropism). Because of the autotropic straightening of roots in microgravity, their tip was oriented at an angle close to the optimal angle of curvature (120 degrees -135 degrees ) for a period of 2 h during centrifugation. Moreover, it has been demonstrated that lentil roots grown in microgravity before stimulation were more sensitive than roots grown in 1 g. In these conditions, the threshold acceleration perceived by these organs was found to be between 0 and 2.0 x 10(-3) g and estimated punctually at 1.4 x 10(-5) g by using the hyperbolic model for fitting the experimental data and by assuming that autotropism had no or little impact on the gravitropic response. Gravisensing by statoliths should be possible at such a low level of acceleration because the actomyosin system could provide the necessary work to overcome the activation energy for gravisensing.


Assuntos
Sensação Gravitacional/fisiologia , Lens (Planta)/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Voo Espacial , Morfogênese , Plântula/crescimento & desenvolvimento , Ausência de Peso
10.
J Plant Physiol ; 207: 30-41, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27792899

RESUMO

Environmental gravity modulates plant growth and development, and these processes are influenced by the balance between cell proliferation and differentiation in meristems. Meristematic cells are characterized by the coordination between cell proliferation and cell growth, that is, by the accurate regulation of cell cycle progression and the optimal production of biomass for the viability of daughter cells after division. Thus, cell growth is correlated with the rate of ribosome biogenesis and protein synthesis. We investigated the effects of simulated microgravity on cellular functions of the root meristem in a sequential study. Seedlings were grown in a clinostat, a device producing simulated microgravity, for periods between 3 and 10days. In a complementary study, seedlings were grown in a Random Positioning Machine (RPM) and sampled sequentially after similar periods of growth. Under these conditions, the cell proliferation rate and the regulation of cell cycle progression showed significant alterations, accompanied by a reduction of cell growth. However, the overall size of the root meristem did not change. Analysis of cell cycle phases by flow cytometry showed changes in their proportion and duration, and the expression of the cyclin B1 gene, a marker of entry in mitosis, was decreased, indicating altered cell cycle regulation. With respect to cell growth, the rate of ribosome biogenesis was reduced under simulated microgravity, as shown by morphological and morphometric nucleolar changes and variations in the levels of the nucleolar protein nucleolin. Furthermore, in a nucleolin mutant characterized by disorganized nucleolar structure, the microgravity treatment intensified disorganization. These results show that, regardless of the simulated microgravity device used, a great disruption of meristematic competence was the first response to the environmental alteration detected at early developmental stages. However, longer periods of exposure to simulated microgravity do not produce an intensification of the cellular damages or a detectable developmental alteration in seedlings analyzed at further stages of their growth. This suggests that the secondary response to the gravity alteration is a process of adaptation, whose mechanism is still unknown, which eventually results in viable adult plants.


Assuntos
Arabidopsis/citologia , Arabidopsis/fisiologia , Meio Ambiente , Meristema/citologia , Meristema/fisiologia , Simulação de Ausência de Peso , Proteínas de Arabidopsis/metabolismo , Ciclo Celular , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestrutura , Proliferação de Células , Ciclina B1/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica de Plantas , Meristema/anatomia & histologia , Tamanho do Órgão , Biogênese de Organelas , Ribossomos/metabolismo , Ribossomos/ultraestrutura
12.
Physiol Plant ; 114(3): 336-342, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12060255

RESUMO

The dose-response curve of the gravitropic reaction is often used to evaluate the gravisensing of plant organs. It has been proposed (Larsen 1957) that the response (curvature) varies linearly as a function of the logarithm of the dose of gravistimulus. As this model fitted correctly most of the data obtained in the literature, the presentation time (tp, minimal duration of stimulation in the gravitational field to induce a response) or the presentation dose (dp, minimal quantity in g.s of stimulation to induce a response) were estimated by extrapolating down to zero curvature the straight line representing the response as a function of the logarithm of the stimulus. This method was preferred to a direct measurement of dp or tp with minute stimulations, since very slight gravitropic response cannot be distinguished from the background oscillations of the extremity of the organs. In the present review, it is shown that generally the logarithmic model (L) does not fit the experimental data published in the literature as well as the hyperbolic model (H). The H model in its simplest form is related to a response in which a ligand-receptor system is the limiting phase in the cascade of events leading to the response (Weyers et al. 1987). However, it is demonstrated that the differential growth, responsible for the curvature (and the angle of curvature), would vary as a hyperbolic function of the dose of stimulation, even if several steps involving ligand-receptor systems are responsible for the gravitropic curvature. In the H model, there is theoretically no presentation time (or presentation dose) since the curve passes through the origin. The value of the derivative of the H function equals a/b and represents the slope of the cune at the origin. It could be therefore used to estimate gravisensitivity. This provides a measurement of graviresponsiveness for threshold doses of stimulation. These results imply that the presentation time (or presentation dose) derived from the L model cannot be used anymore as an estimate of gravisensitivity. On the contrary, the perception time (minimal duration of a repeated stimulation which induces a response), which is less than 1 s, should be related to the perception of gravity. The consequences of these results on the mode of action and the nature of graviperception are discussed.

13.
Plant Signal Behav ; 9(9): e29637, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25763699

RESUMO

Growing plants in space for using them in bioregenerative life support systems during long-term human spaceflights needs improvement of our knowledge in how plants can adapt to space growth conditions. In a previous study performed on board the International Space Station (GENARA A experiment STS-132) we evaluate the global changes that microgravity can exert on the membrane proteome of Arabidopsis seedlings. Here we report additional data from this space experiment, taking advantage of the availability in the EMCS of a centrifuge to evaluate the effects of cues other than microgravity on the relative distribution of membrane proteins. Among the 1484 membrane proteins quantified, 227 proteins displayed no abundance differences between µ g and 1 g in space, while their abundances significantly differed between 1 g in space and 1 g on ground. A majority of these proteins (176) were over-represented in space samples and mainly belong to families corresponding to protein synthesis, degradation, transport, lipid metabolism, or ribosomal proteins. In the remaining set of 51 proteins that were under-represented in membranes, aquaporins and chloroplastic proteins are majority. These sets of proteins clearly appear as indicators of plant physiological processes affected in space by stressful factors others than microgravity.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Meio Ambiente Extraterreno , Proteoma/metabolismo , Ausência de Peso/efeitos adversos , Proteínas de Arabidopsis/metabolismo , Microssomos/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Voo Espacial , Estresse Fisiológico
14.
PLoS One ; 9(3): e91814, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24618597

RESUMO

The "GENARA A" experiment was designed to monitor global changes in the proteome of membranes of Arabidopsis thaliana seedlings subjected to microgravity on board the International Space Station (ISS). For this purpose, 12-day-old seedlings were grown either in space, in the European Modular Cultivation System (EMCS) under microgravity or on a 1 g centrifuge, or on the ground. Proteins associated to membranes were selectively extracted from microsomes and identified and quantified through LC-MS-MS using a label-free method. Among the 1484 proteins identified and quantified in the 3 conditions mentioned above, 80 membrane-associated proteins were significantly more abundant in seedlings grown under microgravity in space than under 1 g (space and ground) and 69 were less abundant. Clustering of these proteins according to their predicted function indicates that proteins associated to auxin metabolism and trafficking were depleted in the microsomal fraction in µg space conditions, whereas proteins associated to stress responses, defence and metabolism were more abundant in µg than in 1 g indicating that microgravity is perceived by plants as a stressful environment. These results clearly indicate that a global membrane proteomics approach gives a snapshot of the cell status and its signaling activity in response to microgravity and highlight the major processes affected.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Microssomos/metabolismo , Voo Espacial , Ausência de Peso , Proteínas de Membrana/metabolismo , Fenótipo , Transporte Proteico , Proteômica , Plântula/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA