Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Chem Phys ; 160(8)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38415831

RESUMO

Graphene oxide (GO) is a two-dimensional, mechanically strong, and chemically tunable material for separations. Elucidating GO-ion-water interactions at the molecular scale is highly important for predictive understanding of separation systems. However, direct observations of the nanometer region by GO surfaces under operando conditions are not trivial. Therefore, thin films of GO at the air/water interface can be used as model systems. With this approach, we study the effects of alkali metal ions on water organization near graphene oxide films at the air/water interface using vibrational sum frequency generation (SFG) spectroscopy. We also use an arachidic acid Langmuir monolayer as a benchmark for a pure carboxylic acid surface. Theoretical modeling of the concentration-dependent sum frequency signal from graphene oxide and arachidic acid surfaces reveals that the adsorption of monovalent ions is mainly controlled by the carboxylic acid groups on graphene oxide. An in-depth analysis of sum frequency spectra reveals at least three distinct water populations with different hydrogen bonding strengths. The origin of each population can be identified from concentration dependent variations of their SFG signal. Interestingly, an interfacial water structure seemed mostly insensitive to the character of the alkali cation, in contrast to similar studies conducted at the silica/water interface. However, we observed an ion-specific effect with lithium, whose strong hydration prevented direct interactions with the graphene oxide film.

2.
Inorganica Chim Acta ; 5082020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32377022

RESUMO

Pickering emulsions, or emulsions with solid particles at the interface, have attracted significant interest in Enhanced Oil Recovery (EOR) processes, cosmetics, and drug delivery systems due to their ability to resist coalescence. Here, a synthetic clay nanoparticle, laponite®, is utilized to create oil-in-water (o/w) emulsions, and the addition of small-molecule surfactants induces a more stable emulsion. In this study, the stability of laponite® Pickering emulsions with and without the surfactants (dodecyltrimethylammonium bromide (DTAB), Pluronic F68 (F68), and sodium dodecyl sulfate (SDS) is investigated using dynamic light scattering (DLS), ζ-potential, optical microscopy, and rheology. With laponite® and no added surfactants, the DLS and ζ-potential results show formation of emulsion droplets with a diameter of 3 µm and a ζ-potential of -90 mV. With the addition of surfactants, both the droplet diameter and ζ-potential increase, suggesting adsorption of surfactants on the surface of laponite® particle. Optical microscopy suggests that the Pickering emulsion without surfactant undergoes flocculation, while the emulsion becomes stable to coalescence and creaming with addition of surfactants due to formation of a network structure. Regardless of the formation of network structure, the laponite®-F68 emulsion rheologically behaves as a Newtonian fluid, while the laponite®-SDS and laponite®-DTAB emulsions display shear thinning behavior. The difference in the rheological behavior can be attributed to the weak adsorption of F68 on laponite® and electrostatic interactions between laponite® and charged surfactants at oil-water interface.

3.
RSC Adv ; 14(11): 7582-7591, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38481608

RESUMO

Graphene oxide (GO) is a promising material for separations. Nanoscale GO thin films at the air/water interface are excellent experimental models to understand molecular-scale interactions of ions and water with GO. However, the characteristics of GO, such as functional groups and flake size, also affect the thin film properties making it difficult to make systematic studies with GO thin films. This paper reports a simple, reliable, and quick method of preparing ultra-thin GO films, irrespective of their origin, and demonstrates the new opportunities possible with the utilization of this method. The total amount of GO used to form the thin film is significantly less compared to previous examples in the literature, minimizing the dissolved GO in the subphase. X-ray reflectivity (XR) studies show that the majority of the GO film has 1.5 nm thickness over a macroscopic area (∼100 cm2) with very small roughness. Sum frequency generation (SFG) spectroscopy measurements show that H2O and D2O interact differently with GO films, a property that was not observed before. SFG data show that functional groups vary significantly between different commercially available GO samples. The differences are also characterized with XR at high resolution. X-ray fluorescence near total reflection (XFNTR) measurements show that these differences strongly affect ion adsorption and interfacial water behavior near GO, which are vital properties in separation applications. The results pave the way for future studies to elucidate the complex separation mechanisms with GO.

4.
J Phys Chem Lett ; 15(13): 3493-3501, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38517335

RESUMO

Mitigating uranium transport in groundwater is imperative for ensuring access to clean water across the globe. Here, in situ resonant anomalous X-ray reflectivity is used to investigate the adsorption of uranyl on alumina (012) in acidic aqueous solutions, representing typical UVI concentrations of contaminated water near mining sites. The analyses reveal that UVI adsorbs at two distinct heights of 2.4-3.2 and 5-5.3 Å from the surface terminal oxygens. The former is interpreted as the mixture of inner-sphere and outer-sphere complexes that adsorb closest to the surface. The latter is interpreted as an outer-sphere complex that shares one equatorial H2O with the terminal surface oxygen. With increasing pH, we observe an increasing prevalence of these outer-sphere complexes, indicating the enhanced role of the hydrogen bond that stabilizes adsorbed uranyl species. The presented work provides a molecular-scale understanding of sorption of uranyl on Al-based-oxide surfaces that has implications for environmental chemistry and materials science.

5.
Nanoscale ; 15(35): 14319-14337, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37561081

RESUMO

Graphene and graphene oxide (GO) are two particularly promising nanomaterials for a range of applications including energy storage, catalysis, and separations. Understanding the nanoscale interactions between ions and water near graphene and GO surfaces is critical for advancing our fundamental knowledge of these systems and downstream application success. This minireview highlights the necessity of using surface-specific experimental probes and computational techniques to fully characterize these interfaces, including the nanomaterial, surrounding water, and any adsorbed ions, if present. Key experimental and simulation studies considering water and ion structures near both graphene and GO are discussed. The major findings are: water forms 1-3 hydration layers near graphene; ions adsorb electrostatically to graphene under an applied potential; the chemical and physical properties of GO vary considerably depending on the synthesis route; and these variations influence water and ion adsorption to GO. Lastly, we offer outlooks and perspectives for these research areas.

6.
J Phys Condens Matter ; 34(14)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35016162

RESUMO

The structure of the electrical double layer (EDL) formed near graphene in aqueous environments strongly impacts its performance for a plethora of applications, including capacitive deionization. In particular, adsorption and organization of multivalent counterions near the graphene interface can promote nonclassical behaviors of EDL including overcharging followed by co-ion adsorption. In this paper, we characterize the EDL formed near an electrified graphene interface in dilute aqueous YCl3solution usingin situhigh resolution x-ray reflectivity (also known as crystal truncation rod) and resonant anomalous x-ray reflectivity (RAXR). These interface-specific techniques reveal the electron density profiles with molecular-scale resolution. We find that yttrium ions (Y3+) readily adsorb to the negatively charged graphene surface to form an extended ion profile. This ion distribution resembles a classical diffuse layer but with a significantly high ion coverage, i.e., 1 Y3+per 11.4 ± 1.6 Å2, compared to the value calculated from the capacitance measured by cyclic voltammetry (1 Y3+per ∼240 Å2). Such overcharging can be explained by co-adsorption of chloride that effectively screens the excess positive charge. The adsorbed Y3+profile also shows a molecular-scale gap (⩾5 Å) from the top graphene surfaces, which is attributed to the presence of intervening water molecules between the adsorbents and adsorbates as well as the lack of inner-sphere surface complexation on chemically inert graphene. We also demonstrate controlled adsorption by varying the applied potential and reveal consistent Y3+ion position with respect to the surface and increasing cation coverage with increasing the magnitude of the negative potential. This is the first experimental description of a model graphene-aqueous system with controlled potential and provides important insights into the application of graphene-based systems for enhanced and selective ion separations.

7.
ACS Appl Mater Interfaces ; 14(51): 57133-57143, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36533427

RESUMO

Graphene oxide (GO) membranes are excellent candidates for a range of separation applications, including rare earth segregation and radionuclide decontamination. Understanding nanoscale water and ion behavior near interfacial GO is critical for groundbreaking membrane advances, including improved selectivity and permeability. We experimentally examine the impact of solution conditions on water and lanthanide interactions with interfacial GO films and connect these results to GO membrane performance. The investigation of the confined films at the air-water interface with a combination of surface-specific spectroscopy and X-ray scattering techniques allows us to understand water and ion behaviors separately. Sum frequency generation spectroscopy reveals a dramatic change in interfacial water organization because of graphene oxide film deprotonation. Interfacial X-ray fluorescence measurements show a 17× increase in adsorbed lanthanide to the GO film from subphase pH 3 to pH 9. Liquid surface X-ray reflectivity data show an additional 2.7 e- per Å2 for GO films at pH 9 versus pH 3 as well. These results are connected to GO membrane performance, which show increased selectivity and decreased flux for membranes filtering pH 9 solutions. We posit insoluble lanthanide hydroxides form at higher pHs. Taken together, these results highlight the importance of interfacial experiments on model GO systems.

8.
J Colloid Interface Sci ; 538: 209-217, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30508741

RESUMO

HYPOTHESIS: Stratification or self-segregation of multicomponent particle mixtures during drying is an important phenomenon to understand for the development of single-step deposition processes for complex coatings. We hypothesize that varying the ratio of particle Peclet numbers will lead to different types of stratification behavior. EXPERIMENTS: Binary colloidal films of polystyrene and silica were prepared by evaporative film formation, and stratification of nanoparticles of different size ratio (7.7-1.2) was studied using microbeam small-angle X-ray scattering (SAXS). FINDINGS: SAXS spectra showed noticeable variations at different film depths, consistent with stratification. These results are quantified to obtain vertical composition profiles. We observe "sandwich"-type layered structures at different nanoparticle size ratios, which to our knowledge have not been previously observed experimentally or predicted by theory. For example, for films of larger particle size ratios (7.7-4.8), large particles are enriched at the film top and bottom, leading to a large-small-large or "LSL" behavior; while within films of smaller particle size ratio (2.2-1.2), small particles are enriched at the top and bottom of the film (small-large-small or "SLS" structures). The enrichment of particles at the top persists over several hundred particle layers and is not just a single monolayer pinned to the upper surface.

9.
Stem Cells Transl Med ; 8(8): 775-784, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31037833

RESUMO

Glaucoma is one of the leading causes of blindness, and there is an ongoing need for new therapies. Recent studies indicate that cell transplantation using Müller glia may be beneficial, but there is a need for novel sources of cells to provide therapeutic benefit. In this study, we have isolated Müller glia from retinal organoids formed by human induced pluripotent stem cells (hiPSCs) in vitro and have shown their ability to partially restore visual function in rats depleted of retinal ganglion cells by NMDA. Based on the present results, we suggest that Müller glia derived from retinal organoids formed by hiPSC may provide an attractive source of cells for human retinal therapies, to prevent and treat vision loss caused by retinal degenerative conditions. Stem Cells Translational Medicine 2019;8:775&784.


Assuntos
Transplante de Células/métodos , Células Ependimogliais/transplante , Células-Tronco Pluripotentes Induzidas/citologia , Degeneração Retiniana/terapia , Células Ganglionares da Retina/fisiologia , Animais , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Células Ependimogliais/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Organoides/citologia , Fenótipo , Ratos , Regeneração , Células Ganglionares da Retina/patologia
10.
J Colloid Interface Sci ; 515: 70-77, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29331782

RESUMO

HYPOTHESIS: Multicomponent coatings with layers comprising different functionalities are of interest for a variety of applications, including electronic devices, energy storage, and biomaterials. Rather than creating such a film using multiple deposition steps, we explore a single-step method to create such films by varying the particle Peclet numbers, Pe. Our hypothesis, based on recent theoretical descriptions of the stratification process, is that by varying particle size and evaporation rate such that Pe of large and small particles are above and below unity, we can create stratified films of polymeric and inorganic particles. EXPERIMENTS: We present AFM on the surface composition of films comprising poly(styrene) nanoparticles (diameter 25-90 nm) and silica nanoparticles (diameter 8-14 nm). Previous studies on films containing both inorganic and polymeric particles correspond to large Pe values (e.g., 120-460), while we utilize Pe ∼ 0.3-4, enabling us to test theories that have been developed for different regimes of Pe. FINDINGS: We demonstrate evidence of stratification and effect of the Pe ratio, although our results agree only qualitatively with theory. Our results also provide validation of recent theoretical descriptions of the film drying process that predict different regimes for large-on-top and small-on-top stratification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA