Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068958

RESUMO

Alzheimer's disease (AD) is the most common form of neurodegenerative disease worldwide. A large body of work implicates insulin resistance in the development and progression of AD. Moreover, impairment in mitochondrial function, a common symptom of insulin resistance, now represents a fundamental aspect of AD pathobiology. Ceramides are a class of bioactive sphingolipids that have been hypothesized to drive insulin resistance. Here, we describe preliminary work that tests the hypothesis that hyperinsulinemia pathologically alters cerebral mitochondrial function in AD mice via accrual of the ceramides. Homozygous male and female ApoE4 mice, an oft-used model of AD research, were given chronic injections of PBS (control), insulin, myriocin (an inhibitor of ceramide biosynthesis), or insulin and myriocin over four weeks. Cerebral ceramide content was assessed using liquid chromatography-mass spectrometry. Mitochondrial oxygen consumption rates were measured with high-resolution respirometry, and H2O2 emissions were quantified via biochemical assays on brain tissue from the cerebral cortex. Significant increases in brain ceramides and impairments in brain oxygen consumption were observed in the insulin-treated group. These hyperinsulinemia-induced impairments in mitochondrial function were reversed with the administration of myriocin. Altogether, these data demonstrate a causative role for insulin in promoting brain ceramide accrual and subsequent mitochondrial impairments that may be involved in AD expression and progression.


Assuntos
Hiperinsulinismo , Resistência à Insulina , Doenças Neurodegenerativas , Camundongos , Masculino , Feminino , Animais , Insulina/metabolismo , Ceramidas/metabolismo , Apolipoproteína E4/metabolismo , Peróxido de Hidrogênio/metabolismo , Doenças Neurodegenerativas/metabolismo , Mitocôndrias/metabolismo , Insulina Regular Humana , Metabolismo Energético , Hiperinsulinismo/metabolismo
2.
Int J Mol Sci ; 19(8)2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30071599

RESUMO

The clinical benefit of ketosis has historically and almost exclusively centered on neurological conditions, lending insight into how ketones alter mitochondrial function in neurons. However, there is a gap in our understanding of how ketones influence mitochondria within skeletal muscle cells. The purpose of this study was to elucidate the specific effects of ß-hydroxybutyrate (ß-HB) on muscle cell mitochondrial physiology. In addition to increased cell viability, murine myotubes displayed beneficial mitochondrial changes evident in reduced H2O2 emission and less mitochondrial fission, which may be a result of a ß-HB-induced reduction in ceramides. Furthermore, muscle from rats in sustained ketosis similarly produced less H2O2 despite an increase in mitochondrial respiration and no apparent change in mitochondrial quantity. In sum, these results indicate a general improvement in muscle cell mitochondrial function when ß-HB is provided as a fuel.


Assuntos
Ácido 3-Hidroxibutírico/farmacologia , Ceramidas/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Animais , Camundongos , Músculo Esquelético/citologia
3.
Int J Mol Sci ; 18(5)2017 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-28531105

RESUMO

We have previously found that cigarette smoke disrupts metabolic function, in part, by increasing muscle ceramide accrual. To further our understanding of this, we sought to determine the role of the cytokine high-mobility group box 1 (HMGB1), which is increased with smoke exposure, in smoke-induced muscle metabolic perturbations. To test this theory, we determined HMGB1 from lungs of human smokers, as well as from lung cells from mice exposed to cigarette smoke. We also treated cells and mice directly with HMGB1, in the presence or absence of myriocin, an inhibitor of serine palmitoyltransferase, the rate-limiting enzyme in ceramide biosynthesis. Outcomes included assessments of insulin resistance and muscle mitochondrial function. HMGB1 was significantly increased in both human lungs and rodent alveolar macrophages. Further testing revealed that HMGB1 treatment elicited a widespread increase in ceramide species and reduction in myotube mitochondrial respiration, an increase in reactive oxygen species, and reduced insulin-stimulated Akt phosphorylation. Inhibition of ceramide biosynthesis with myriocin was protective. In mice, by comparing treatments of HMGB1 injections with or without myriocin, we found that HMGB1 injections resulted in increased muscle ceramides, especially C16 and C24, which were necessary for reduced muscle mitochondrial respiration and compromised insulin and glucose tolerance. In conclusion, HMGB1 may be a necessary intermediate in the ceramide-dependent metabolic consequences of cigarette smoke exposure.


Assuntos
Ceramidas/biossíntese , Proteína HMGB1/metabolismo , Pulmão/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Nicotiana/efeitos adversos , Fumaça/efeitos adversos , Fumar/metabolismo , Animais , Respiração Celular , Ceramidas/antagonistas & inibidores , Ceramidas/genética , Ácidos Graxos Monoinsaturados/farmacologia , Proteína HMGB1/sangue , Proteína HMGB1/farmacologia , Humanos , Insulina/metabolismo , Resistência à Insulina , Pulmão/patologia , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Mitocôndrias/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina C-Palmitoiltransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA