RESUMO
In this study we profiled vaccine-induced polyclonal antibodies as well as plasmablast-derived mAbs from individuals who received SARS-CoV-2 spike mRNA vaccine. Polyclonal antibody responses in vaccinees were robust and comparable to or exceeded those seen after natural infection. However, the ratio of binding to neutralizing antibodies after vaccination was greater than that after natural infection and, at the monoclonal level, we found that the majority of vaccine-induced antibodies did not have neutralizing activity. We also found a co-dominance of mAbs targeting the NTD and RBD of SARS-CoV-2 spike and an original antigenic-sin like backboost to spikes of seasonal human coronaviruses OC43 and HKU1. Neutralizing activity of NTD mAbs but not RBD mAbs against a clinical viral isolate carrying E484K as well as extensive changes in the NTD was abolished, suggesting that a proportion of vaccine-induced RBD binding antibodies may provide substantial protection against viral variants carrying single E484K RBD mutations.
Assuntos
Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , RNA Mensageiro/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Substituição de Aminoácidos , Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos/imunologia , Ligação Competitiva , Humanos , Imunoglobulina G/metabolismo , Mutação/genética , Domínios Proteicos , Hipermutação Somática de Imunoglobulina/genéticaRESUMO
It is thought that mRNA-based vaccine-induced immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wanes quickly, based mostly on short-term studies. Here, we analyzed the kinetics and durability of the humoral responses to SARS-CoV-2 infection and vaccination using >8,000 longitudinal samples collected over a 3-year period in New York City. Upon primary immunization, participants with pre-existing immunity mounted higher antibody responses faster and achieved higher steady-state antibody titers than naive individuals. Antibody kinetics were characterized by two phases: an initial rapid decay, followed by a stabilization phase with very slow decay. Booster vaccination equalized the differences in antibody concentration between participants with and without hybrid immunity, but the peak antibody titers decreased with each successive antigen exposure. Breakthrough infections increased antibodies to similar titers as an additional vaccine dose in naive individuals. Our study provides strong evidence that SARS-CoV-2 antibody responses are long lasting, with initial waning followed by stabilization.
Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2 , Formação de Anticorpos , Vacinação , Imunização Secundária , Vacinas de mRNA , Anticorpos AntiviraisRESUMO
The Omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was initially identified in November 2021 in South Africa and Botswana, as well as in a sample from a traveller from South Africa in Hong Kong1,2. Since then, Omicron has been detected globally. This variant appears to be at least as infectious as Delta (B.1.617.2), has already caused superspreader events3, and has outcompeted Delta within weeks in several countries and metropolitan areas. Omicron hosts an unprecedented number of mutations in its spike gene and early reports have provided evidence for extensive immune escape and reduced vaccine effectiveness2,4-6. Here we investigated the virus-neutralizing and spike protein-binding activity of sera from convalescent, double mRNA-vaccinated, mRNA-boosted, convalescent double-vaccinated and convalescent boosted individuals against wild-type, Beta (B.1.351) and Omicron SARS-CoV-2 isolates and spike proteins. Neutralizing activity of sera from convalescent and double-vaccinated participants was undetectable or very low against Omicron compared with the wild-type virus, whereas neutralizing activity of sera from individuals who had been exposed to spike three or four times through infection and vaccination was maintained, although at significantly reduced levels. Binding to the receptor-binding and N-terminal domains of the Omicron spike protein was reduced compared with binding to the wild type in convalescent unvaccinated individuals, but was mostly retained in vaccinated individuals.
Assuntos
Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/virologia , Convalescença , Evasão da Resposta Imune/imunologia , Soros Imunes/imunologia , SARS-CoV-2/imunologia , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Adulto , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Vacina BNT162/administração & dosagem , Vacina BNT162/imunologia , COVID-19/transmissão , Feminino , Humanos , Imunização Secundária , Modelos Moleculares , Testes de Neutralização , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologiaRESUMO
The global emergence of many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants jeopardizes the protective antiviral immunity induced after infection or vaccination. To address the public health threat caused by the increasing SARS-CoV-2 genomic diversity, the National Institute of Allergy and Infectious Diseases within the National Institutes of Health established the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme. This effort was designed to provide a real-time risk assessment of SARS-CoV-2 variants that could potentially affect the transmission, virulence, and resistance to infection- and vaccine-induced immunity. The SAVE programme is a critical data-generating component of the US Government SARS-CoV-2 Interagency Group to assess implications of SARS-CoV-2 variants on diagnostics, vaccines and therapeutics, and for communicating public health risk. Here we describe the coordinated approach used to identify and curate data about emerging variants, their impact on immunity and effects on vaccine protection using animal models. We report the development of reagents, methodologies, models and notable findings facilitated by this collaborative approach and identify future challenges. This programme is a template for the response to rapidly evolving pathogens with pandemic potential by monitoring viral evolution in the human population to identify variants that could reduce the effectiveness of countermeasures.
Assuntos
COVID-19 , SARS-CoV-2 , Animais , Evolução Biológica , Vacinas contra COVID-19 , Humanos , National Institute of Allergy and Infectious Diseases (U.S.) , Pandemias/prevenção & controle , Variantes Farmacogenômicos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Estados Unidos/epidemiologia , VirulênciaRESUMO
Combined vaccine formulations targeting not only hemagglutinin but also other influenza virus antigens could form the basis for a universal influenza virus vaccine that has the potential to elicit long-lasting, broadly cross-reactive immune responses. Lipid nanoparticle (LNP)-encapsulated messenger RNA (mRNA) vaccines can be utilized to efficiently target multiple antigens with a single vaccine. Here, we assessed the immunogenicity and protective efficacy of nucleoside-modified mRNA-LNP vaccines that contain four influenza A group 2 virus antigens (hemagglutinin stalk, neuraminidase, matrix protein 2, and nucleoprotein) in mice. We found that all vaccine components induced antigen-specific cellular and humoral immune responses after administration of a single dose. While the monovalent formulations were not exclusively protective, the combined quadrivalent formulation protected mice from all challenge viruses, including a relevant H1N1 influenza virus group 1 strain, with minimal weight loss. Importantly, the combined vaccine protected from morbidity at a dose of 125 ng per antigen after a single vaccination in mice. With these findings, we confidently conclude that the nucleoside-modified mRNA-LNP platform can be used to elicit protection against a large panel of influenza viruses.
Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Camundongos , Animais , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Nucleosídeos , Hemaglutininas , Vacinas Combinadas , RNA Mensageiro/genética , Anticorpos Antivirais , Vacinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vacinas de mRNARESUMO
Seasonal coronaviruses have been circulating widely in the human population for many years. With increasing age, humans are more likely to have been exposed to these viruses and to have developed immunity against them. It has been hypothesized that this immunity to seasonal coronaviruses may provide partial protection against infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and it has also been shown that coronavirus disease 2019 (COVID-19) vaccination induces a back-boosting effects against the spike proteins of seasonal betacoronaviruses. In this study, we tested if immunity to the seasonal coronavirus spikes from OC43, HKU1, 229E, or NL63 would confer protection against SARS-CoV-2 challenge in a mouse model, and whether pre-existing immunity against these spikes would weaken the protection afforded by mRNA COVID-19 vaccination. We found that mice vaccinated with the seasonal coronavirus spike proteins had no increased protection compared to the negative controls. While a negligible back-boosting effect against betacoronavirus spike proteins was observed after SARS-CoV-2 infection, there was no negative original antigenic sin-like effect on the immune response and protection induced by SARS-CoV-2 mRNA vaccination in animals with pre-existing immunity to seasonal coronavirus spike proteins. IMPORTANCE The impact that immunity against seasonal coronaviruses has on both susceptibility to SARS-CoV-2 infection as well as on COVID-19 vaccination is unclear. This study provides insights into both questions in a mouse model of SARS-CoV-2.
Assuntos
Vacinas contra COVID-19 , Infecções por Coronavirus , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Camundongos , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , Estações do Ano , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Proteção Cruzada/imunologiaRESUMO
BACKGROUND: The number of exposures to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to vaccine antigens affect the magnitude and avidity of the polyclonal response. METHODS: We studied binding and avidity of different antibody isotypes to the spike, the receptor-binding domain (RBD), and the nucleoprotein (NP) of wild-type (WT) and BA.1 SARS-CoV-2 in convalescent, mRNA vaccinated and/or boosted, hybrid immune individuals and in individuals with breakthrough cases during the peak of the BA.1 wave. RESULTS: We found an increase in spike-binding antibodies and antibody avidity with increasing number of exposures to infection and/or vaccination. NP antibodies were detectible in convalescent individuals and a proportion of breakthrough cases, but they displayed low avidity. Omicron breakthrough infections elicited high levels of cross-reactive antibodies between WT and BA.1 antigens in vaccinated individuals without prior infection directed against the spike and RBD. The magnitude of the antibody response and avidity correlated with neutralizing activity against WT virus. CONCLUSIONS: The magnitude and quality of the antibody response increased with the number of antigenic exposures, including breakthrough infections. However, cross-reactivity of the antibody response after BA.1 breakthroughs, was affected by the number of prior exposures.
Assuntos
Anticorpos Antivirais , Afinidade de Anticorpos , Infecções Irruptivas , COVID-19 , SARS-CoV-2 , Animais , Humanos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Infecções Irruptivas/sangue , Infecções Irruptivas/imunologia , Chlorocebus aethiops , COVID-19/sangue , COVID-19/imunologia , COVID-19/prevenção & controle , Teste Sorológico para COVID-19 , SARS-CoV-2/imunologia , Vacinação , Células Vero , Vacina BNT162/imunologia , Vacina BNT162/uso terapêuticoRESUMO
Influenza virus neuraminidase (NA)-targeting antibodies are an independent correlate of protection against influenza. Antibodies against the NA act by blocking enzymatic activity, preventing virus release and transmission. As we advance the development of improved influenza virus vaccines that incorporate standard amounts of NA antigen, it is important to identify the antigenic targets of human monoclonal antibodies (mAbs). Here, we describe escape mutants generated by serial passage of A/Netherlands/602/2009 (H1N1)pdm09 in the presence of human anti-N1 mAbs. We observed escape mutations on the head domain of the N1 protein around the enzymatic site (S364N, N369T, and R430Q) and also detected escape mutations located on the sides and bottom of the NA (N88D, N270D, and Q313K/R). This work increases our understanding of how human antibody responses target the N1 protein. IMPORTANCE As improved influenza virus vaccines are being developed, the influenza virus neuraminidase (NA) is becoming an important new target for immune responses. By identifying novel epitopes of anti-NA antibodies, we can improve vaccine design. Additionally, characterizing escape mutations in these epitopes aids in identifying NA antigenic drift in circulating viruses.
Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Anticorpos Monoclonais , Anticorpos Antivirais/metabolismo , Epitopos/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H1N1/genética , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Influenza Humana/virologia , Mutação , Neuraminidase/química , Neuraminidase/genética , Neuraminidase/imunologiaRESUMO
Serious Psychological Distress (SPD) and prenatal exposure to substances are associated with adverse outcomes for pregnant individuals and their developing offspring. This study aims to examine the relationship between SPD and quantity, or frequency of substance use among pregnant women in the United States (US). Descriptive and negative binomial regression analyses of the 2015-2019 National Survey on Drug Use and Health (NSDUH) were conducted among 3373 pregnant women (18 to 44 years old) to examine the association between SPD and (1) average number of cigarettes smoked in the past 30 days, (2) number of days of binge drinking in the past 30 days, and (3) number of days of cannabis use in the past 30 days. About 6% of the study population experienced SPD in the past 30 days. Compared to pregnant women who did not report SPD, pregnant women experiencing SPD showed greater rates in the number of cigarettes smoked during the past 30 days (IRR = 2.1, 95%CI = 1.1, 4.5), the number of days of binge drinking in the past 30 days (IRR = 5.1, 95%CI = 1.7, 15.4), and the number of days of cannabis use in the past 30 days (IRR = 2.9, 95%CI = 1.3, 6.5). Our results extend findings from prior research by documenting an association between SPD and the quantity and frequency of substance use among pregnant women in the US. Individual and structural interventions addressing SPD and/or substance might help reduce the impact of these comorbid conditions on expectant parents and their offspring.
Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Uso da Maconha , Transtornos Relacionados ao Uso de Substâncias , Uso de Tabaco , Adolescente , Adulto , Feminino , Humanos , Gravidez , Adulto Jovem , Consumo Excessivo de Bebidas Alcoólicas/epidemiologia , Gestantes/psicologia , Estresse Psicológico/epidemiologia , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Estados Unidos/epidemiologia , Uso de Tabaco/epidemiologia , Uso da Maconha/epidemiologia , Consumo de Bebidas AlcoólicasRESUMO
PURPOSE: The present study was to determine whether OP2113 could limit myocardial infarction size and the no-reflow phenomenon in a rat myocardial ischemia/reperfusion model. METHODS: Rat heart-isolated mitochondria (RHM) were used to investigate mitochondrial respiration and mitochondrial reactive oxygen species (mtROS) generation both in normal conditions and in ischemia/reperfusion-mimicking conditions (using high concentrations of succinate). Human skeletal muscle myoblasts (HSMM) in culture were used to investigate the cellular intermittent deprivation in energy substrates and oxygen as reported in ischemia/reperfusion conditions. In vivo, rats were anesthetized and subjected to 30 min of left coronary artery occlusion followed by 3 h of reperfusion. Rats were randomized to receive OP2113 as an intravenous infusion starting either 5 min prior to coronary artery occlusion (preventive), or 5 min prior to reperfusion (curative), or to receive vehicle starting 5 min prior to coronary artery occlusion. Infusions continued until the end of the study (3 h of reperfusion). RESULTS: RHM treated with OP2113 showed a concentration-dependent reduction of succinate-induced mtROS generation. In HSMM cells, OP2113 treatment (5-10 µM) during 48H prevented the reduction in the steady-state level of ATP measured just after reperfusion injuries and decreased the mitochondrial affinity to oxygen. In vivo, myocardial infarct size, expressed as the percentage of the ischemic risk zone, was significantly lower in the OP2113-treated preventive group (44.5 ± 2.9%) versus that in the vehicle group (57.0 ± 3.6%; p < 0.05), with a non-significant trend toward a smaller infarct size in the curative group (50.8 ± 3.9%). The area of no reflow as a percentage of the risk zone was significantly smaller in both the OP2113-treated preventive (28.8 ± 2.4%; p = 0.026 vs vehicle) and curative groups (30.1 ± 2.3%; p = 0.04 vs vehicle) compared with the vehicle group (38.9 ± 3.1%). OP2113 was not associated with any hemodynamic changes. CONCLUSIONS: These results suggest that OP2113 is a promising mitochondrial ROS-modulating agent to reduce no-reflow as well as to reduce myocardial infarct size, especially if it is on board early in the course of the infarction. It appears to have benefit on no-reflow even when administered relatively late in the course of ischemia.
Assuntos
Doença da Artéria Coronariana , Oclusão Coronária , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Animais , Ratos , Circulação Coronária , Modelos Animais de Doenças , Isquemia , Reperfusão Miocárdica , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Oxigênio , SuccinatosRESUMO
BACKGROUND: Nosocomial respiratory virus outbreaks represent serious public health challenges. Rapid and precise identification of cases and tracing of transmission chains is critical to end outbreaks and to inform prevention measures. METHODS: We combined conventional surveillance with influenza A virus (IAV) genome sequencing to identify and contain a large IAV outbreak in a metropolitan healthcare system. A total of 381 individuals, including 91 inpatients and 290 healthcare workers (HCWs), were included in the investigation. RESULTS: During a 12-day period in early 2019, infection preventionists identified 89 HCWs and 18 inpatients as cases of influenza-like illness (ILI), using an amended definition without the requirement for fever. Sequencing of IAV genomes from available nasopharyngeal specimens identified 66 individuals infected with a nearly identical strain of influenza A H1N1pdm09 (43 HCWs, 17 inpatients, and 6 with unspecified affiliation). All HCWs infected with the outbreak strain had received the seasonal influenza virus vaccination. Characterization of 5 representative outbreak viral isolates did not show antigenic drift. In conjunction with IAV genome sequencing, mining of electronic records pinpointed the origin of the outbreak as a single patient and a few interactions in the emergency department that occurred 1 day prior to the index ILI cluster. CONCLUSIONS: We used precision surveillance to delineate a large nosocomial IAV outbreak, mapping the source of the outbreak to a single patient rather than HCWs as initially assumed based on conventional epidemiology. These findings have important ramifications for more-effective prevention strategies to curb nosocomial respiratory virus outbreaks.
Assuntos
Infecção Hospitalar , Influenza Humana , Infecção Hospitalar/prevenção & controle , Surtos de Doenças , Genômica , Hospitais , Humanos , Influenza Humana/prevenção & controleRESUMO
Resonance fluorescence has played a major role in quantum optics with predictions and later experimental confirmation of nonclassical features of its emitted light such as antibunching or squeezing. In the Rayleigh regime where most of the light originates from the scattering of photons with subnatural linewidth, antibunching would appear to coexist with sharp spectral lines. Here, we demonstrate that this simultaneous observation of subnatural linewidth and antibunching is not possible with simple resonant excitation. Using an epitaxial quantum dot for the two-level system, we independently confirm the single-photon character and subnatural linewidth by demonstrating antibunching in a Hanbury Brown and Twiss type setup and using high-resolution spectroscopy, respectively. However, when filtering the coherently scattered photons with filter bandwidths on the order of the homogeneous linewidth of the excited state of the two-level system, the antibunching dip vanishes in the correlation measurement. Our observation is explained by antibunching originating from photon-interferences between the coherent scattering and a weak incoherent signal in a skewed squeezed state. This prefigures schemes to achieve simultaneous subnatural linewidth and antibunched emission.
Assuntos
Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Anticorpos Neutralizantes/sangue , Área Sob a Curva , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Feminino , Humanos , Fenômenos Imunogenéticos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Glicoproteína da Espícula de Coronavírus/imunologiaRESUMO
Seedlessness is greatly prized by consumers of fresh grapes. While stenospermocarpic seed abortion determined by the SEED DEVELOPMENT INHIBITOR (SDI) locus is the usual source of seedlessness in commercial grapevine (Vitis vinifera) cultivars, the underlying sdi mutation remains unknown. Here, we undertook an integrative approach to identify the causal mutation. Quantitative genetics and fine-mapping in two 'Crimson Seedless'-derived F1 mapping populations confirmed the major effect of the SDI locus and delimited the sdi mutation to a 323-kb region on chromosome 18. RNA-sequencing comparing seed traces of seedless and seeds of seeded F1 individuals identified processes triggered during sdi-determined seed abortion, including the activation of salicylic acid-dependent autoimmunity. The RNA-sequencing data set was investigated for candidate genes, and while no evidence for causal cis-acting regulatory mutations was detected, deleterious nucleotide changes in coding sequences of the seedless haplotype were predicted in two genes within the sdi fine-mapping interval. Targeted resequencing of the two genes in a collection of 124 grapevine cultivars showed that only the point variation causing the arginine-197-to-leucine substitution in the seed morphogenesis regulator gene AGAMOUS-LIKE11 (VviAGL11) was fully linked with stenospermocarpy. The concurrent postzygotic variation identified for this missense polymorphism and seedlessness phenotype in seeded somatic variants of the original stenospermocarpic cultivar supports a causal effect. We postulate that seed abortion caused by this amino acid substitution in VviAGL11 is the major cause of seedlessness in cultivated grapevine. This information can be exploited to boost seedless grape breeding.
Assuntos
Proteínas de Domínio MADS/genética , Mutação de Sentido Incorreto , Proteínas de Plantas/genética , Sementes/genética , Vitis/fisiologia , Substituição de Aminoácidos , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Locos de Características Quantitativas , Ácido Salicílico/metabolismo , Sementes/crescimento & desenvolvimento , Vitis/genéticaRESUMO
PURPOSE: We investigated whether bilateral, lower limb remote ischemic preconditioning (RIPC) improved long-term survival using a rat model of hemorrhagic shock/resuscitation. METHODS: Rats were anesthetized, intubated and ventilated, and randomly assigned to RIPC, induced by inflating bilateral pressure cuffs around the femoral arteries to 200 mmHg for 5 min, followed by 5-min release of the cuffs (repeated for 4 cycles), or control group (cuffs were inflated to 30 mmHg). Hemorrhagic shock was induced by withdrawing blood to a fixed mean blood pressure of 30 mmHg for 30 min, followed by 30 min of resuscitation with shed blood. Rats remained anesthetized for 1 h during which hemodynamics were monitored then they were allowed to survive for 6 weeks. RESULTS: The percentage of estimated total blood volume withdrawn to maintain a level of 30 mmHg was similar in both groups. RIPC significantly increased survival at 6 weeks: 5 of 27 (19%) rats in the control group and 13 of 26 (50%; p = 0.02) rats in the RIPC group survived. Blood pressure was higher in the RIPC group. The diastolic internal dimension of the left ventricle, an indicator of circulating intravascular blood volume, was significantly larger in the RIPC group at 1 h after initiation of resuscitation compared to the control group (p = 0.04). Left ventricular function assessed by fractional shortening was comparable in both groups at 1 h after initiation of resuscitation. Blood urea nitrogen (BUN) was within normal range in the RIPC group (17.3 ± 1.2 mg/dl) but elevated in the control group (22.0 ± 1.7 mg/dl) at 48 h after shock. CONCLUSIONS: RIPC significantly improved short-term survival in rats that were subjected to hemorrhagic shock, and this benefit was maintained long term. RIPC led to greater circulating intravascular blood volume in the early phase of resuscitation and improved BUN.
Assuntos
Hemodinâmica , Membro Posterior/irrigação sanguínea , Precondicionamento Isquêmico/métodos , Choque Hemorrágico/terapia , Oclusão Terapêutica , Animais , Biomarcadores/sangue , Nitrogênio da Ureia Sanguínea , Volume Sanguíneo , Proteínas de Transporte/sangue , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Masculino , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional , Ressuscitação , Choque Hemorrágico/sangue , Choque Hemorrágico/fisiopatologia , Fatores de TempoRESUMO
Chronic kidney disease (CKD) is characterized by loss of renal function. The pathological processes involved in the progression of this condition are already known, but the molecular mechanisms have not been completely explained. Recent reports have shown the intrinsic capacity of the kidney to undergo repair after acute injury through the reexpression of repairing proteins (Villanueva S, Cespedes C, Vio CP. Am J Physiol Regul Integr Comp Physiol 290: R861-R870, 2006). Stimulation with basic fibroblast growth factor (bFGF) could accelerate this process. However, it is not known whether bFGF can induce this phenomenon in kidney cells affected by CKD. Our aim was to study the evolution of renal damage in animals with CKD treated with bFGF and to relate the amount of repairing proteins with renal damage progression. Male Sprague-Dawley rats were subjected to 5/6 nephrectomy (NPX) and treated with bFGF (30 µg/kg, NPX+bFGF); a control NPX group was treated with saline (NPX+S). Animals were euthanized 35 days after bFGF administration. Functional effects were assessed based on serum creatinine levels; morphological damage was assessed by the presence of macrophages (ED-1), interstitial α-smooth muscle actin (α-SMA), and interstitial collagen through Sirius red staining. The angiogenic factors VEGF and Tie-2 and the epithelial/tubular factors Ncam, bFGF, Pax-2, bone morphogenic protein-7, Noggin, Lim-1, Wnt-4, and Smads were analyzed. Renal stem cells were evaluated by Oct-4. We observed a significant reduction in serum creatinine levels, ED-1, α-SMA, and Sirius red as well as an important induction of Oct-4, angiogenic factors, and repairing proteins in NPX+bFGF animals compared with NPX+S animals. These results open new perspectives toward reducing damage progression in CKD.
Assuntos
Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Rim/efeitos dos fármacos , Insuficiência Renal Crônica/tratamento farmacológico , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Creatinina/sangue , Fator 2 de Crescimento de Fibroblastos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/metabolismo , Rim/patologia , Masculino , Nefrectomia , Ratos , Ratos Sprague-Dawley , Receptor TIE-2/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
In recent years, much attention has focused on the role of aldosterone and mineralocorticoid receptors (MRs) in the pathophysiology of hypertension and cardiovascular disease. Patients with primary aldosteronism, in whom angiotensin II levels are low, have a higher incidence of cardiovascular complications than patients with essential hypertension. The Randomized Aldactone Evaluation Study (RALES) demonstrated that adding a non-specific MR antagonist, spironolactone, to a standard therapy that included angiotensin-converting enzyme (ACE) inhibitors, loop diuretics, and digoxin, significantly reduced morbidity and mortality in patients with moderate to severe heart failure. Similarly, the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS) showed that the addition of a selective MR antagonist (ARM), eplerenone, to an optimal medical therapy reduces morbidity and mortality among patients with acute myocardial infarction complicated by left ventricular dysfunction and heart failure. These data suggest that aldosterone induces cardiac injury through activation of MRs and support the notion that MR blockade has beneficial effects on aldosterone-dependent cardiac injury, through mechanisms that cannot be simply explained by hemodynamic changes. Although, MRA are highly effective in patients with heart failure, the risk of hyperkalemia should not be overlooked. Serious hyperkalemia events were reported in some MRA clinical trials; however these risks can be mitigated through appropriate patient selection, dose selection, patient education, monitoring, and follow-up.
Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Hipertensão Essencial , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Hipertensão/tratamento farmacológico , Infarto do Miocárdio/tratamento farmacológico , Disfunção Ventricular Esquerda/tratamento farmacológicoRESUMO
IMPORTANCE: As demonstrated by severe acute respiratory syndrome coronavirus 2, coronaviruses pose a significant pandemic threat. Here, we show that coronavirus disease 2019 mRNA vaccination can induce significant levels of cross-reactive antibodies against diverse coronavirus spike proteins. While these antibodies are binding antibodies that likely have little neutralization capacity and while their contribution to cross-protection is unclear, it is possible that they may play a role in protection from progression to severe disease with novel coronaviruses.
Assuntos
COVID-19 , Humanos , Prevalência , SARS-CoV-2/genética , Reações Cruzadas , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus/genéticaRESUMO
Post vaccine immunity following COVID-19 mRNA vaccination may be driven by extrinsic, or controllable and intrinsic, or inherent health factors. Thus, we investigated the effects of extrinsic and intrinsic on the peak antibody response following COVID-19 primary vaccination and on the trajectory of peak antibody magnitude and durability over time. Participants in a longitudinal cohort attended visits every 3 months for up to 2 years following enrollment. At baseline, participants provided information on their demographics, recreational behaviors, and comorbid health conditions which guided our model selection process. Blood samples were collected for serum processing and spike antibody testing at each visit. Cross-sectional and longitudinal models (linear-mixed effects models) were generated to assess the relationship between selected intrinsic and extrinsic health factors on peak antibody following vaccination and to determine the influence of these predictors on antibody over time. Following cross-sectional analysis, we observed higher peak antibody titers after primary vaccination in females, those who reported recreational drug use, younger age, and prior COVID-19 history. Following booster vaccination, females and Hispanics had higher peak titers after the 3rd and 4th doses, respectively. Longitudinal models demonstrated that Moderna mRNA-1273 recipients, females, and those previously vaccinated had increased peak titers over time. Moreover, drug users and half-dose Moderna mRNA-1273 recipients had higher peak antibody titers over time following the first booster, while no predictive factors significantly affected post-second booster antibody responses. Overall, both intrinsic and extrinsic health factors play a significant role in shaping humoral immunogenicity after initial vaccination and the first booster. The absence of predictive factors for second booster immunogenicity suggests a more robust and consistent immune response after the second booster vaccine administration.
Assuntos
COVID-19 , SARS-CoV-2 , Feminino , Humanos , Formação de Anticorpos , COVID-19/prevenção & controle , Vacina de mRNA-1273 contra 2019-nCoV , Estudos Transversais , Anticorpos , Vacinação , Anticorpos AntiviraisRESUMO
Subvariants of the Omicron lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) efficiently escape neutralizing antibody responses induced by both vaccination and infection with antigenically distinct variants. Here, we describe the potency and breadth of neutralizing and binding antibody responses against a large panel of variants following an Omicron BA.1 or BA.2 breakthrough infection in a heterogeneous cohort of individuals with diverse exposure histories. Both BA.1 and BA.2 breakthrough infections significantly boost antibody levels and broaden antibody reactivity. However, this broader immunity induced by BA.1 and BA.2 breakthrough infections does not neutralize Omicron BQ and XBB subvariants efficiently. While these subvariants are not neutralized well by post-breakthrough sera, suggesting escape, binding non-neutralizing antibody responses are sustained. In summary, our data suggest that while BA.1 and BA.2 breakthrough infections broaden the immune response to SARS-CoV-2 spike, the induced neutralizing antibody response is still outpaced by viral evolution.