Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(10): e202317094, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38236628

RESUMO

Engineering coordinated rotational motion in porous architectures enables the fabrication of molecular machines in solids. A flexible two-fold interpenetrated pillared Metal-Organic Framework precisely organizes fast mobile elements such as bicyclopentane (BCP) (107  Hz regime at 85 K), two distinct pyridyl rotors and E-azo group involved in pedal-like motion. Reciprocal sliding of the two sub-networks, switched by chemical stimuli, modulated the sizes of the channels and finally the overall dynamical machinery. Actually, iodine-vapor adsorption drives a dramatic structural rearrangement, displacing the two distinct subnets in a concerted piston-like motion. Unconventionally, BCP mobility increases, exploring ultra-fast dynamics (107  Hz) at temperatures as low as 44 K, while the pyridyl rotors diverge into a faster and slower dynamical regime by symmetry lowering. Indeed, one pillar ring gained greater rotary freedom as carried by the azo-group in a crank-like motion. A peculiar behavior was stimulated by pressurized CO2, which regulates BCP dynamics upon incremental site occupation. The rotary dynamics is intrinsically coupled to the framework flexibility as demonstrated by complementary experimental evidence (multinuclear solid-state NMR down to very low temperatures, synchrotron radiation XRD, gas sorption) and computational modelling, which helps elucidate the highly sophisticated rotor-structure interplay.

2.
Angew Chem Int Ed Engl ; 62(5): e202215893, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36469012

RESUMO

Fluorinated Metal-Organic Frameworks (MOFs), comprising a wheel-shaped ligand with geminal rotating fluorine atoms, produced benchmark mobility of correlated dipolar rotors at 2 K, with practically null activation energy (Ea =17 cal mol-1 ). 1 H T1 NMR revealed multiple relaxation phenomena due to the exchange among correlated dipole-rotor configurations. Synchrotron radiation X-ray diffraction at 4 K, Density Functional Theory, Molecular Dynamics and phonon calculations showed the fluid landscape and pointed out a cascade mechanism converting dipole configurations into each other. Gas accessibility, shown by hyperpolarized-Xe NMR, allowed for chemical stimuli intervention: CO2 triggered dipole reorientation, reducing their collective dynamics and stimulating a dipole configuration change in the crystal. Dynamic materials under limited thermal noise and high responsiveness enable the fabrication of molecular machines with low energy dissipation and controllable dynamics.

3.
J Am Chem Soc ; 143(33): 13082-13090, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34388339

RESUMO

Achieving sophisticated juxtaposition of geared molecular rotors with negligible energy-requirements in solids enables fast yet controllable and correlated rotary motion to construct switches and motors. Our endeavor was to realize multiple rotors operating in a MOF architecture capable of supporting fast motional regimes, even at extremely cold temperatures. Two distinct ligands, 4,4'-bipyridine (bipy) and bicyclo[1.1.1]pentanedicarboxylate (BCP), coordinated to Zn clusters fabricated a pillar-and-layer 3D array of orthogonal rotors. Variable temperature XRD, 2H solid-echo, and 1H T1 relaxation NMR, collected down to a temperature of 2 K revealed the hyperfast mobility of BCP and an unprecedented cascade mechanism modulated by distinct energy barriers starting from values as low as 100 J mol-1 (24 cal mol-1), a real benchmark for complex arrays of rotors. These rotors explored multiple configurations of conrotary and disrotary relationships, switched on and off by thermal energy, a scenario supported by DFT modeling. Furthermore, the collective bipy-ring rotation was concerted with the framework, which underwent controllable swinging between two arrangements in a dynamical structure. A second way to manipulate rotors by external stimuli was the use of CO2, which diffused through the open pores, dramatically changing the global rotation mechanism. Collectively, the intriguing gymnastics of multiple rotors, devised cooperatively and integrated into the same framework, gave the opportunity to engineer hypermobile rotors (107 Hz at 4 K) in machine-like double ligand MOF crystals.

4.
Nano Lett ; 20(10): 7613-7618, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32870690

RESUMO

Using muon-spin spectroscopy, we study the exceptional dynamical properties of rotating molecular struts engineered within a Zn-based metal-organic framework at cryogenic temperatures, where the internal motions of almost any other organic substance are quenched. Muon-spin spectroscopy is particularly suited for this aim, as the experimental evidence suggests several implantation sites for the muons, among which at least one directly onto the rotating moiety. The dynamics of the molecular rotors are characterized by the exceptionally low activation energy EA ∼ 30 cal mol-1. At the same time, we evidence a highly unusual temperature dependence of the dipolar interaction of muons with nuclear magnetic moments on the rotors, suggesting a complex influence of the rotations on the muon implantation and diffusion.

5.
Phys Chem Chem Phys ; 18(36): 25655-25662, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711561

RESUMO

In dynamic nuclear polarization (DNP) experiments, the compound is driven out-of-equilibrium by the microwave (MW) irradiation of the radical electron spins. Their stationary state has been recently probed via electron double resonance (ELDOR) techniques showing, at low temperature, a broad depolarization of the electron paramagnetic resonance (EPR) spectrum under microwave irradiation. In this theoretical manuscript, we develop a numerical method to compute exactly the EPR spectrum in the presence of dipolar interactions. Our results reproduce the observed broad depolarisation and provide a microscopic justification for the spectral diffusion mechanism. We show the validity of the spin-temperature approach for typical radical concentration used in dissolution DNP protocols. In particular once the interactions are properly taken into account, the spin-temperature is consistent with the non-monotonic behavior of the EPR spectrum with a wide minimum around the irradiated frequency.

6.
Chemistry ; 20(40): 12817-25, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25137217

RESUMO

Double-decker complexes of lanthanide cations can be readily prepared with tetraazaporphyrins (porphyrazines). We have synthesized and characterized a series of neutral double-decker complexes [Ln(OETAP)2 ] (Ln=Tb(3+), Dy(3+), Gd(3+), Y(3+); OETAP=octa(ethyl)tetraazaporphyrin). Some of these complexes show analogous magnetic features to their phthalocyanine (Pc) counterparts. The Tb(3+) and Dy(3+) derivatives exhibit single-molecule magnet (SMM) behavior with high blocking temperatures over 50 and 10 K, respectively. These results confirm that, in double-decker complexes that involve Tb or Dy, the (N4)2 square antiprism coordination mode has an important role in inducing very large activation energies for magnetization reversal. In contrast with their Pc counterparts, the use of tetraazaporphyrin ligands endows the presented [Ln(OETAP)2] complexes with extraordinary chemical versatility. The double-decker complexes that exhibit SMM behavior are highly soluble in common organic solvents, and easily processable even through sublimation.

7.
Phys Chem Chem Phys ; 16(2): 753-64, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24270353

RESUMO

The available theoretical approaches aiming at describing Dynamic Nuclear spin Polarization (DNP) in solutions containing molecules of biomedical interest and paramagnetic centers are not able to model the behaviour observed upon varying the concentration of trityl radicals or the polarization enhancement caused by moderate addition of gadolinium complexes. In this manuscript, we first show experimentally that the nuclear steady state polarization reached in solutions of pyruvic acid with 15 mM trityl radicals is substantially independent on the average internuclear distance. This evidences a leading role of electron (over nuclear) spin relaxation processes in determining the ultimate performances of DNP. Accordingly, we have devised a variant of the Thermal Mixing model for inhomogenously broadened electron resonance lines which includes a relaxation term describing the exchange of magnetic anisotropy energy of the electron spin system with the lattice. Thanks to this additional term, the dependence of the nuclear polarization on the electron concentration can be properly accounted for. Moreover, the model predicts a strong increase of the final polarization upon shortening the electron spin-lattice relaxation time, providing a possible explanation for the effect of gadolinium doping.

8.
Nat Chem ; 12(9): 845-851, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32632187

RESUMO

The solid state is typically not well suited to sustaining fast molecular motion, but in recent years a variety of molecular machines, switches and rotors have been successfully engineered within porous crystals and on surfaces. Here we show a fast-rotating molecular rotor within the bicyclopentane-dicarboxylate struts of a zinc-based metal-organic framework-the carboxylate groups anchored to the metal clusters act as an axle while the bicyclic unit is free to rotate. The three-fold bipyramidal symmetry of the rotator conflicts with the four-fold symmetry of the struts within the cubic crystal cell of the zinc metal-organic framework. This frustrates the formation of stable conformations, allowing for the continuous, unidirectional, hyperfast rotation of the bicyclic units with an energy barrier of 6.2 cal mol-1 and a high frequency persistent for several turns even at very low temperatures (1010 Hz below 2 K). Using zirconium instead of zinc led to a different metal cluster-carboxylate coordination arrangement in the resulting metal-organic framework, and much slower rotation of the bicyclic units.

9.
J Am Chem Soc ; 131(12): 4387-96, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19275145

RESUMO

The experimental and theoretical study of the electron spin dynamics in the anionic form of a single-ion molecule magnet (SIMM), the bis-phthalocyaninato terbium (III) molecule [Pc(2)Tb](-)[TBA](+), has been addressed by means of solid state (1)H NMR spectroscopy. The magnetic properties of the caged Tb(3+) metal center were investigated in a series of diamagnetically diluted preparations, where the excess of tetrabutylamonium bromide ([TBA]Br)(n) salt was used as diamagnetic matrix complement. We found that a high temperature activated spin dynamics characterizes the systems, which involved phonon-assisted transitions among the crystal field levels in qualitative agreements with literature results. However, the activation barriers in these processes range from 641 cm(-1) for the diamagnetically diluted samples to 584 cm(-1) for those undiluted; thus, they exhibit barriers 2-3 times larger than witnessed in earlier (230 cm(-1)) reports (e.g., Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.; Kaizu, Y. J. Am. Chem. Soc. 2003, 125, 8694-8695). At cryogenic temperatures, fluctuations are driven by tunneling processes between the m = +6 and -6 low-energy levels. We found that the barrier Delta and the tunneling rates change from sample to sample and especially the diamagnetically diluted [Pc(2)Tb](-) molecules appear affected by the sample's magneto/thermal history. These observations emphasize that matrix arrangements around [Pc(2)Tb](-) can appreciably alter the splitting of the crystal field levels, its symmetry, and hence, the spin dynamics. Therefore, understanding how small differences in molecular surroundings (as for instance occurring by depositing on surfaces) can trigger substantial modifications in the SIMM property is of utmost importance for the effective operation of such molecules for single-molecule data storage, for example.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Magnetismo , Térbio/química , Cristalização , Íons , Metais , Modelos Estatísticos , Conformação Molecular , Estrutura Molecular , Compostos de Amônio Quaternário/química , Espectrofotometria/métodos , Temperatura
10.
J Phys Chem B ; 123(17): 3731-3737, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30977651

RESUMO

We discuss the temperature dependence of the 1H and 13C nuclear spin-lattice relaxation rate 1/ T1 and dynamic nuclear polarization (DNP) performance in ß-cyclodextrins with deuterated methyl groups. It is shown that 13C DNP-enhanced polarization is raised up to 10%. The temperature dependence of the buildup rate for nuclear spin polarization and of 1/ T1, below 4.2 K, is analyzed in the framework of the thermal mixing regime and the origin of the deviations from the theoretical behavior discussed. 13C 1/ T1 is determined at low temperature by the glassy dynamics and at high temperature by the rotational molecular motions of the deuterated methyl groups. Thanks to deuteration, relaxation times approaching 30 s are achieved at room temperature, making this material interesting for molecular imaging applications. The effect of molecular dynamics on the line width of the NMR spectra is also discussed.

11.
J Phys Chem B ; 122(6): 1836-1845, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29350528

RESUMO

1H and 13C dynamic nuclear polarizations have been studied in 13C-enriched ß-cyclodextrins doped with (2,2,6,6-tetramethylpiperidin-1-yl)oxyl free radical. 1H and 13C polarizations raised above 7.5 and 7%, respectively, and for both nuclear species, the transfer of polarization from the electron spins appears to be consistent with a thermal mixing scenario for a concentration of 9 13C nuclei per molecule. When the concentration is increased to 21 13C nuclei per molecule, a decrease in the spin-lattice relaxation and polarization buildup rates is observed. This reduction is associated with the bottleneck effect induced by the decrease in the number of electron spins per nucleus when both the nuclear spin-lattice relaxation and the polarization occur through the electron non-Zeeman reservoir. 13C nuclear spin-lattice relaxation has been studied in the 1.8-340 K range, and the effects of internal molecular motions and of the free radicals on the relaxation are discussed. 13C hyperpolarization performances and room-temperature spin-lattice relaxation times show that these are promising materials for future biomedical applications.


Assuntos
beta-Ciclodextrinas/química , Isótopos de Carbono , Espectroscopia de Ressonância Magnética , Metilação , Prótons
12.
J Phys Chem B ; 121(12): 2584-2593, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28260385

RESUMO

1H dynamic nuclear polarization and nuclear spin-lattice relaxation rates have been studied in amorphous complexes of ß-cyclodextrins doped with different concentrations of the TEMPO radical. Nuclear polarization increased up to 10% in the optimal case, with a behavior of the buildup rate (1/TPOL) and of the nuclear spin-lattice relaxation rate (1/T1n) consistent with a thermal mixing regime. The temperature dependence of 1/T1n and its increase with the radical concentration indicate a relaxation process arising from the modulation of the electron-nucleus coupling by the glassy dynamics. The high-temperature relaxation is driven by molecular motions, and 1/T1n was studied at room temperature in liquid solutions for dilution levels close to the ones typically used for in vivo studies.

13.
J Phys Condens Matter ; 29(41): 415801, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28872048

RESUMO

Muon spin rotation is employed to investigate the spin dynamics of ferritin proteins isolated from the brain of an Alzheimer's disease (AD) patient and of a healthy control, using a sample of horse-spleen ferritin as a reference. A model based on the Néel theory of superparamagnetism is developed in order to interpret the spin relaxation rate of the muons stopped by the core of the protein. Using this model, our preliminary observations show that ferritins from the healthy control are filled with a mineral compatible with ferrihydrite, while ferritins from the AD patient contain a crystalline phase with a larger magnetocrystalline anisotropy, possibly compatible with magnetite or maghemite.

14.
Chem Commun (Camb) ; 51(6): 1092-5, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25445748

RESUMO

We report here the discovery of a new aromatic hydrocarbon superconductor, Sm-doped chrysene, with Tc ∼ 5 K, and compare its behavior with those measured in the full series of Sm-doped [n]phenacene superconductors, with n = 3, 4, 5, thus determining the trend of Tc as a function of the number of fused benzene rings and for an odd or even number of units.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA