Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37050619

RESUMO

LIDAL (Light Ion Detector for ALTEA, Anomalous Long-Term Effects on Astronauts) is a radiation detector designed to measure the flux, the energy spectra and, for the first time, the time-of-flight of ions in a space habitat. It features a combination of striped silicon sensors for the measurement of deposited energy (using the ALTEA device, which operated from 2006 to 2012 in the International Space Station) and fast scintillators for the time-of-flight measurement. LIDAL was tested and calibrated using the proton beam line at TIFPA (Trento Institute for Fundamental Physics Application) and the carbon beam line at CNAO (National Center for Oncology Hadron-therapy) in 2019. The performance of the time-of-flight system featured a time resolution (sigma) less than 100 ps. Here, we describe the detector and the results of these tests, providing ground calibration curves along with the methodology established for processing the detector's data. LIDAL was uploaded in the International Space Station in November 2019 and it has been operative in the Columbus module since January 2020.

2.
Biosensors (Basel) ; 14(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38391991

RESUMO

One of the main challenges to be faced in deep space missions is to protect the health and ensure the maximum efficiency of the crew by preparing methods of prevention and in situ diagnosis. Indeed, the hostile environment causes important health problems, ranging from muscle atrophy, osteopenia, and immunological and metabolic alterations due to microgravity, to an increased risk of cancer caused by exposure to radiation. It is, therefore, necessary to provide new methods for the real-time measurement of biomarkers suitable for deepening our knowledge of the effects of space flight on the balance of the immune system and for allowing the monitoring of the astronaut's health during long-term missions. APHRODITE will enable human space exploration because it fills this void that affects both missions in LEO and future missions to the Moon and Mars. Its scientific objectives are the design, production, testing, and in-orbit demonstration of a compact, reusable, and reconfigurable system for performing the real-time analysis of oral fluid samples in manned space missions. In the frame of this project, a crew member onboard the ISS will employ APHRODITE to measure the selected target analytes, cortisol, and dehydroepiandrosterone sulfate (DHEA-S), in oral fluid, in four (plus one additional desired session) separate experiment sessions. The paper addresses the design of the main subsystems of the analytical device and the preliminary results obtained during the first implementations of the device subsystems and testing measurements on Earth. In particular, the system design and the experiment data output of the lab-on-chip photosensors and of the front-end readout electronics are reported in detail along with preliminary chemical tests for the duplex competitive CL-immunoassay for the simultaneous detection of cortisol and DHEA-S. Different applications also on Earth are envisaged for the APHRODITE device, as it will be suitable for point-of-care testing applications (e.g., emergency medicine, bioterrorism, diagnostics in developing countries, etc.).


Assuntos
Técnicas Biossensoriais , Voo Espacial , Humanos , Hidrocortisona , Desenho de Equipamento , Desidroepiandrosterona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA