Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891892

RESUMO

Recently, a compound derived from recent scientific advances named 34 has emerged as the focus of this research, the aim of which is to explore its potential impact on solid tumor cell lines. Using a combination of bioinformatics and biological assays, this study conducted an in-depth investigation of the effects of 34. The results of this study have substantial implications for cancer research and treatment. 34 has shown remarkable efficacy in inhibiting the growth of several cancer cell lines, including those representing prostate carcinoma (PC3) and cervical carcinoma (HeLa). The high sensitivity of these cells, indicated by low IC50 values, underscores its potential as a promising chemotherapeutic agent. In addition, 34 has revealed the ability to induce cell cycle arrest, particularly in the G2/M phase, a phenomenon with critical implications for tumor initiation and growth. By interfering with DNA replication in cancer cells, 34 has shown the capacity to trigger cell death, offering a new avenue for cancer treatment. In addition, computational analyses have identified key genes affected by 34 treatment, suggesting potential therapeutic targets. These genes are involved in critical biological processes, including cell cycle regulation, DNA replication and microtubule dynamics, all of which are central to cancer development and progression. In conclusion, this study highlights the different mechanisms of 34 that inhibit cancer cell growth and alter the cell cycle. These promising results suggest the potential for more effective and less toxic anticancer therapies. Further in vivo validation and exploration of combination therapies are critical to improve cancer treatment outcomes.


Assuntos
Acrilonitrila , Antineoplásicos , Microtúbulos , Humanos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Acrilonitrila/análogos & derivados , Acrilonitrila/farmacologia , Acrilonitrila/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Células HeLa , Apoptose/efeitos dos fármacos , Triazóis/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , Células PC-3
2.
Neural Netw ; 179: 106492, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38986187

RESUMO

Pre-trained models are commonly used in Continual Learning to initialize the model before training on the stream of non-stationary data. However, pre-training is rarely applied during Continual Learning. We investigate the characteristics of the Continual Pre-Training scenario, where a model is continually pre-trained on a stream of incoming data and only later fine-tuned to different downstream tasks. We introduce an evaluation protocol for Continual Pre-Training which monitors forgetting against a Forgetting Control dataset not present in the continual stream. We disentangle the impact on forgetting of 3 main factors: the input modality (NLP, Vision), the architecture type (Transformer, ResNet) and the pre-training protocol (supervised, self-supervised). Moreover, we propose a Sample-Efficient Pre-training method (SEP) that speeds up the pre-training phase. We show that the pre-training protocol is the most important factor accounting for forgetting. Surprisingly, we discovered that self-supervised continual pre-training in both NLP and Vision is sufficient to mitigate forgetting without the use of any Continual Learning strategy. Other factors, like model depth, input modality and architecture type are not as crucial.

3.
Eur J Med Chem ; 276: 116647, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38981337

RESUMO

Multi-drug resistance (MDR) is a serious challenge in contemporary clinical practice and is mostly responsible for the failure of cancer medication therapies. Several experimental evidence links MDR to the overexpression of the drug efflux transporter P-gp, therefore, the discovery of novel P-glycoprotein inhibitors is required to treat or prevent MDR and to improve the absorption of chemotherapy drugs via the gastrointestinal system. In this work, we explored a series of novel pyridoquinoxaline-based derivatives designed from parental compounds, previously proved active in enhancing anticancer drugs in MDR nasopharyngeal carcinoma (KB). Among them, derivative 10d showed the most potent and selective inhibition of fluorescent dye efflux, if compared to reference compounds (MK-571, Novobiocin, Verapamil), and the highest MDR reversal activity when co-administered with the chemotherapeutic agents Vincristine and Etoposide, at non-cytotoxic concentrations. Molecular modelling predicted the two compound 10d binding mode in a ratio of 2:1 with the target protein. No cytotoxicity was observed in healthy microglia cells and off-target investigations showed the absence of CaV1.2 channel blockade. In summary, our findings indicated that 10d could potentially be a novel therapeutic coadjutant by inhibiting P-gp transport function in vitro, thereby reversing cancer multidrug resistance.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Antineoplásicos , Descoberta de Drogas , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Quinoxalinas , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Quinoxalinas/farmacologia , Quinoxalinas/química , Quinoxalinas/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Relação Dose-Resposta a Droga , Proliferação de Células/efeitos dos fármacos , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA