Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Neurobiol Dis ; 130: 104508, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31212067

RESUMO

Epilepsy is often associated with altered expression or function of ion channels. One example of such a channelopathy is the reduction of A-type potassium currents in the hippocampal CA1 region. The underlying mechanisms of reduced A-type channel function in epilepsy are unclear. Here, we show that inhibiting a single microRNA, miR-324-5p, which targets the pore-forming A-type potassium channel subunit Kv4.2, selectively increased A-type potassium currents in hippocampal CA1 pyramidal neurons in mice. Resting membrane potential, input resistance and other potassium currents were not altered. In a mouse model of acquired chronic epilepsy, inhibition of miR-324-5p reduced the frequency of spontaneous seizures and interictal epileptiform spikes supporting the physiological relevance of miR-324-5p-mediated control of A-type currents in regulating neuronal excitability. Mechanistic analyses demonstrated that microRNA-induced silencing of Kv4.2 mRNA is increased in epileptic mice leading to reduced Kv4.2 protein levels, which is mitigated by miR-324-5p inhibition. By contrast, other targets of miR-324-5p were unchanged. These results suggest a selective miR-324-5p-dependent mechanism in epilepsy regulating potassium channel function, hyperexcitability and seizures.


Assuntos
Epilepsia/fisiopatologia , Hipocampo/fisiopatologia , MicroRNAs/metabolismo , Convulsões/fisiopatologia , Canais de Potássio Shal/metabolismo , Regulação para Cima , Animais , Modelos Animais de Doenças , Epilepsia/metabolismo , Hipocampo/metabolismo , Camundongos , MicroRNAs/genética , Convulsões/metabolismo , Canais de Potássio Shal/genética
2.
Front Allergy ; 22021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34368802

RESUMO

In animals and humans, offspring of allergic mothers have increased responsiveness to allergen and the allergen-specificity of the offspring can be different than that of the mother. In our preclinical models, the mother's allergic responses influence development of the fetus and offspring by elevating numbers of cells in dendritic cell subsets. A major question is the identity of maternal factors of allergic mothers that alter offspring development of responsiveness to allergen. Lipids are altered during allergic responses and lipids are transported to the fetus for growth and formation of fetal membranes. We hypothesized that pro-inflammatory lipids, that are elevated in allergic mothers, are transported to the fetus and regulate fetal immune development. We demonstrate in this report that there was a significant 2-fold increase in ß-glucosylceramides (ßGlcCer) in allergic mothers, the fetal liver and her offspring. The ßGlcCer were transported from mother's plasma, across the placenta, to the fetus and in breastmilk to the offspring. Administration of ßGlcCer to non-allergic mothers was sufficient for offspring responses to allergen. Importantly, maternal administration of a clinically relevant pharmacological inhibitor of ßGlcCer synthase returned ßGlcCer to normal levels in the allergic mothers and her offspring and blocked the offspring increase in dendritic cell subsets and offspring allergen responsiveness. In summary, allergic mothers had increased ßGlcCer that was transported to offspring and mediated increases in offspring DCs and responsiveness to allergen. These data have a significant impact on our understanding of mechanisms for development of allergies in offspring of allergic mothers and have the potential to lead to novel interventions that significantly impact risk for allergic disease early in life.

3.
Front Allergy ; 2: 677019, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35387035

RESUMO

Neonatal mice with heterozygous mutations in genes encoding the skin barrier proteins filaggrin and mattrin (flaky tail mice [FT+/-]) exhibit oral peanut-induced anaphylaxis after skin sensitization. As we have previously reported, sensitization in this model is achieved via skin co- exposure to the environmental allergen Alternaria alternata (Alt), peanut extract (PNE), and detergent. However, the function of Alt in initiation of peanut allergy in this model is little understood. The purpose of this study was to investigate candidate cytokines induced by Alt in the skin and determine the role of these cytokines in the development of food allergy, namely oncostatin M (Osm), amphiregulin (Areg), and IL-33. RT-qPCR analyses demonstrated that skin of FT+/- neonates expressed Il33 and Osm following Alt or Alt/PNE but not PNE exposure. By contrast, expression of Areg was induced by either Alt, PNE, or Alt/PNE sensitization in FT+/- neonates. In scRNAseq analyses, Osm, Areg, and Il33 were expressed by several cell types, including a keratinocyte cluster that was expanded in the skin of Alt/PNE-exposed FT+/- pups as compared to Alt/PNE-exposed WT pups. Areg and OSM were required for oral PNE-induced anaphylaxis since anaphylaxis was inhibited by administration of neutralizing anti-Areg or anti-OSM antibodies prior to each skin sensitization with Alt/PNE. It was then determined if intradermal injection of recombinant IL33 (rIL33), rAreg, or rOSM in the skin could substitute for Alt during skin sensitization to PNE. PNE skin sensitization with intradermal rIL33 was sufficient for oral PNE-induced anaphylaxis, whereas skin sensitization with intradermal rAreg or rOSM during skin exposure to PNE was not sufficient for anaphylaxis to oral PNE challenge. Based on these studies a pathway for IL33, Areg and OSM in Alt/PNE sensitized FT+/- skin was defined for IgE induction and anaphylaxis. Alt stimulated two pathways, an IL33 pathway and a pathway involving OSM and Areg. These two pathways acted in concert with PNE to induce food allergy in pups with skin barrier mutations.

4.
Exp Neurol ; 334: 113437, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32822706

RESUMO

The voltage-gated potassium channel Kv4.2 is a critical regulator of dendritic excitability in the hippocampus and is crucial for dendritic signal integration. Kv4.2 mRNA and protein expression as well as function are reduced in several genetic and pharmacologically induced rodent models of epilepsy and autism. It is not known, however, whether reduced Kv4.2 is just an epiphenomenon or a disease-contributing cause of neuronal hyperexcitability and behavioral impairments in these neurological disorders. To address this question, we used male and female mice heterozygous for a Kv.2 deletion and adult-onset manipulation of hippocampal Kv4.2 expression in male mice to assess the role of Kv4.2 in regulating neuronal network excitability, morphology and anxiety-related behaviors. We observed a reduction in dendritic spine density and reduced proportions of thin and stubby spines but no changes in anxiety, overall activity, or retention of conditioned freezing memory in Kv4.2 heterozygous mice compared with wildtype littermates. Using EEG analyses, we showed elevated theta power and increased spike frequency in Kv4.2 heterozygous mice under basal conditions. In addition, the latency to onset of kainic acid-induced seizures was significantly shortened in Kv4.2 heterozygous mice compared with wildtype littermates, which was accompanied by a significant increase in theta power. By contrast, overexpressing Kv4.2 in wildtype mice through intrahippocampal injection of Kv4.2-expressing lentivirus delayed seizure onset and reduced EEG power. These results suggest that Kv4.2 is an important regulator of neuronal network excitability and dendritic spine morphology, but not anxiety-related behaviors. In the future, manipulation of Kv4.2 expression could be used to alter seizure susceptibility in epilepsy.


Assuntos
Espinhas Dendríticas/metabolismo , Eletroencefalografia/métodos , Hipocampo/metabolismo , Convulsões/metabolismo , Canais de Potássio Shal/biossíntese , Animais , Feminino , Predisposição Genética para Doença , Células HEK293 , Hipocampo/citologia , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Convulsões/genética , Convulsões/fisiopatologia , Canais de Potássio Shal/genética
5.
Pharmacotherapy ; 39(1): 40-54, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414209

RESUMO

INTRODUCTION: Human leukocyte antigen (HLA)-B*5701 screening identifies patients at increased risk for abacavir (ABC) hypersensitivity reaction (HSR). Screening was adopted in GlaxoSmithKline and ViiV Healthcare clinical trials in 2007 and human immunodeficiency virus treatment guidelines in 2008. Company meta-analyses of trials pre-HLA-B*5701 screening reported HSR rates of 4-8%. We analyzed the effectiveness of HLA-B*5701 screening on reducing HSR rates using clinical trial, Observational Pharmaco-Epidemiology Research & Analysis (OPERA) cohort, and spontaneous reporting data. METHODS: A meta-analysis examined 12 trials in 3063 HLA-B*5701-negative patients receiving an ABC-containing regimen from April 9, 2007, to September 22, 2015. Potential cases were identified using prespecified Medical Dictionary for Regulatory Activities (MedDRA) preferred terms (drug hypersensitivity, hypersensitivity, anaphylactic reaction, anaphylaxis) and adjudicated against a Company ABC HSR case definition. Investigator-diagnosed cases were identified and rates were calculated. In the OPERA cohort, 9619 patients initiating their first ABC-containing regimen from January 1, 1999, to January 1, 2016, were identified. Patients were observed from regimen start until the earliest-following censoring event: ABC discontinuation, loss to follow-up, death, or study end (July 31, 2016). OPERA physicians evaluated events against OPERA definitions for definite/probable cases of ABC HSR; rates were calculated pre- and post-2008. The Company case definition was used to identify spontaneously reported cases for four marketed ABC-containing products; reporting rates were calculated using estimated exposure from sales data, through December 31, 2016. RESULTS: Suspected ABC HSR rates were 1.3% or less in the meta-analysis. In the OPERA cohort, the rate was 0.4% among patients initiating ABC post-2008 versus 1.3% pre-2008 (p<0.0001). Spontaneous reporting rates were low post-2008 (54 to 22 cases per 100,000 patient-years exposure [PYE]) versus pre-2008 (618 to 55 cases per 100,000 PYE). CONCLUSIONS: Clinically suspected ABC HSR rates were 1.3% or less in HLA-B*5701-negative patients. Recognizing their limitations, data from the OPERA cohort and spontaneous reporting indicate that HLA-B*5701 screening has reduced reporting rates of suspected HSR in clinical practice. Where screening for HLA-B*5701 is standard care, patients should be confirmed negative for this allele before starting ABC treatment.


Assuntos
Didesoxinucleosídeos/efeitos adversos , Hipersensibilidade a Drogas/etiologia , Antígenos HLA-B/genética , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/efeitos adversos , Didesoxinucleosídeos/administração & dosagem , Hipersensibilidade a Drogas/genética , Infecções por HIV/tratamento farmacológico , Humanos , Programas de Rastreamento/métodos
6.
Neuropsychopharmacology ; 44(2): 324-333, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30061744

RESUMO

Defects in the phosphoinositide 3-kinase (PI3K) pathway are shared characteristics in several brain disorders, including the inherited intellectual disability and autism spectrum disorder, fragile X syndrome (FXS). PI3K signaling therefore could serve as a therapeutic target for FXS and other brain disorders. However, broad inhibition of such a central signal transduction pathway involved in essential cellular functions may produce deleterious side effects. Pharmacological strategies that selectively correct the overactive components of the PI3K pathway while leaving other parts of the pathway intact may overcome these challenges. Here, we provide the first evidence that disease mechanism-based PI3K isoform-specific inhibition may be a viable treatment option for FXS. FXS is caused by loss of the fragile X mental retardation protein (FMRP), which translationally represses specific messenger RNAs, including the PI3K catalytic isoform p110ß. FMRP deficiency increases p110ß protein levels and activity in FXS mouse models and in cells from subjects with FXS. Here, we show that a novel, brain-permeable p110ß-specific inhibitor, GSK2702926A, ameliorates FXS-associated phenotypes on molecular, cellular, behavioral, and cognitive levels in two different FMRP-deficient mouse models. Rescued phenotypes included increased PI3K downstream signaling, protein synthesis rates, and dendritic spine density, as well as impaired social interaction and higher-order cognition. Several p110ß-selective inhibitors, for example, a molecule from the same chemotype as GSK2702926A, are currently being evaluated in clinical trials to treat cancer. Our results suggest that repurposing p110ß inhibitors to treat cognitive and behavioral defects may be a promising disease-modifying strategy for FXS and other brain disorders.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Camundongos , Atividade Motora/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA