Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 34(22): 6315-6327, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29350535

RESUMO

Contact charge electrophoresis (CCEP) uses steady electric fields to drive the oscillatory motion of conductive particles and droplets between two or more electrodes. In contrast to traditional forms of electrophoresis and dielectrophoresis, CCEP allows for rapid and sustained particle motions driven by low-power dc voltages. These attributes make CCEP a promising mechanism for powering active components for mobile microfluidic technologies. This Feature Article describes our current understanding of CCEP as well as recent strategies to harness it for applications in microfluidics and beyond.

2.
Langmuir ; 32(45): 11837-11844, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27766888

RESUMO

The zeta potential of a particle characterizes its motion in an electric field and is often thought to be negligible at high ionic strength (several moles per liter) due to thinning of the electrical double layer (EDL). Here, we describe zeta potential measurements on polystyrene latex (PSL) particles at monovalent salt concentrations up to saturation (∼5 M NaCl) using electrophoresis in sinusoidal electric fields and high-speed video microscopy. Our measurements reveal that the zeta potential remains finite at even the highest concentrations. Moreover, we find that the zeta potentials of sulfated PSL particles continue to obey the classical Gouy-Chapman model up to saturation despite significant violations in the model's underlying assumptions. By contrast, amidine-functionalized PSL particles exhibit qualitatively different behaviors such as zero zeta potentials at high concentrations of NaCl and KCl and even charge inversion in KBr solutions. The experimental results are reproduced and explained by Monte Carlo simulations of a simple lattice model of the EDL that accounts for effects due to ion size and ion-ion correlations. At high salt conditions, the model suggests that quantitative changes in the magnitude of surface charge can result in qualitative changes in the zeta potential-most notably, charge inversion of highly charged surfaces. These findings have important implications for electrokinetic phenomena such as diffusiophoresis within salty environments such as oceans, geological reservoirs, and living organisms.

3.
Langmuir ; 32(49): 13167-13173, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27951714

RESUMO

We investigate the dynamics of metallodielectric Janus particles moving via contact charge electrophoresis (CCEP) between two parallel electrodes. CCEP uses a constant voltage to repeatedly charge and actuate conductive particles within a dielectric fluid, resulting in rapid oscillatory motion between the electrodes. In addition to particle oscillations, we find that micrometer-scale Janus particles move perpendicular to the field at high speeds (up to 600 µm/s) and over large distances. We characterize particle motions and propose a mechanism based on the rotation-induced translation of the particle following charge transfer at the electrode surface. The propulsion mechanism is supported both by experiments with fluorescent particles that reveal their rotational motions and by simulations of CCEP dynamics that capture the relevant electrostatics and hydrodynamics. We also show that interactions among multiple particles can lead to repulsion, attraction, and/or cooperative motions depending on the position and phase of the respective particle oscillators. Our results demonstrate how particle asymmetries can be used to direct the motions of active colloids powered by CCEP.

4.
Langmuir ; 31(13): 3808-14, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25785396

RESUMO

Contact charge electrophoresis (CCEP) uses steady electric fields to drive the continuous, oscillatory motion of conductive particles and droplets between two or more electrodes. These rapid oscillations can be rectified to direct the motion of objects within microfluidic environments using low-power, dc voltage. Here, we compare high precision experimental measurements of CCEP within a microfluidic system to equally detailed theoretical predictions on the motion of a conductive particle between parallel electrodes. We use a simple, capillary microfluidic platform that combines high-speed imaging with precision electrical measurements to enable the synchronized acquisition of both the particle location and the electric current due to particle motion. The experimental results are compared to those of a theoretical model, which relies on a Stokesian dynamics approach to accurately describe both the electrostatic and hydrodynamic problems governing particle motion. We find remarkable agreement between theory and experiment, suggesting that particle motion can be accurately captured by a combination of classical electrostatics and low-Reynolds number hydrodynamics. Building on this agreement, we offer new insight into the charge transfer process that occurs when the particle nears contact with an electrode surface. In particular, we find that the particle does not make mechanical contact with the electrode but rather that charge transfer occurs at finite surface separations of >0.1 µm by means of an electric discharge through a thin lubricating film. We discuss the implications of these findings on the charging of the particle and its subsequent dynamics.

5.
Anal Chem ; 84(16): 7080-4, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22839734

RESUMO

The potential difference between two microreference electrodes, Δφ(sol), immersed in an aqueous sulfuric acid solution was monitored while performing conventional cyclic voltammetric experiments with a Pt disk electrode embedded in an insulating surface in an axisymmetric cell configuration. The resulting Δφ(sol) vs E curves, where E is the potential applied to the Pt disk electrode were remarkably similar to the voltammograms regardless of the position of the microreference probes. Most importantly, the actual values of Δφ(sol) were in very good agreement with those predicted by the primary current distribution using Newman's formalism (Newman, J. J. Electrochem. Soc. 1966, 113, 501-502). These findings afford a solid basis for the development of ohmic microscopy as a quantitative tool for obtaining spatially resolved images of electrodes displaying nonhomogenous surfaces.

6.
Phys Rev E ; 96(4-1): 043101, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29347598

RESUMO

We describe a simple microfluidic system that enables the steady generation and efficient transport of aqueous drops using only a constant voltage input. Drop generation is achieved through an electrohydrodynamic dripping mechanism by which conductive drops grow and detach from a grounded nozzle in response to an electric field. The now-charged drops are transported down a ratcheted channel by contact charge electrophoresis powered by the same voltage input used for drop generation. We investigate how the drop size, generation frequency, and transport velocity depend on system parameters such as the liquid viscosity, interfacial tension, applied voltage, and channel dimensions. The observed trends are well explained by a series of scaling analyses that provide insight into the dominant physical mechanisms underlying drop generation and ratcheted transport. We identify the conditions necessary for achieving reliable operation and discuss the various modes of failure that can arise when these conditions are violated. Our results demonstrate that simple electric inputs can power increasingly complex droplet operations with potential opportunities for inexpensive and portable microfluidic systems.

7.
Lab Chip ; 14(21): 4230-6, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25190290

RESUMO

We present a simple and effective ratcheted microfluidic mixer that uses contact charge electrophoresis (CCEP) of a micron-scale particle to rapidly mix nonpolar liquids. CCEP combines contact charging and electrostatic actuation to drive the continuous oscillatory motion of a conductive particle between two electrodes subject to a constant (DC) voltage. We show how this oscillatory motion can be harnessed to mix laminar flows by using dielectric "ramps" to direct the particle along non-reciprocal, orbital trajectories, which repeatedly stretch and fold the flowing streams. Complete mixing requires that the speed of the particle is much larger than the fluid velocity such that the particle completes many orbits as the fluid flows through the mixing region. The extent of mixing also depends strongly on the size of the particle and the shape of its trajectory; effective mixers relied on larger particles (comparable to the size of the channel) moving along non-reciprocal orbits. While the present study uses mineral oil as a convenient nonpolar liquid, we also screened fifteen common solvents to determine the applicability of CCEP for mixing other organic liquids. Owing to its simple design and low power requirements (~100 nW), the orbital mixer presented here demonstrates the utility and versatility of ratcheted electrostatic actuation in powering active microfluidic operations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA