Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Appl Biomech ; 36(4): 259-278, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32663800

RESUMO

Two optimization techniques, static optimization (SO) and computed muscle control (CMC), are often used in OpenSim to estimate the muscle activations and forces responsible for movement. Although differences between SO and CMC muscle function have been reported, the accuracy of each technique and the combined effect of optimization and model choice on simulated muscle function is unclear. The purpose of this study was to quantitatively compare the SO and CMC estimates of muscle activations and forces during gait with the experimental data in the Gait2392 and Full Body Running models. In OpenSim (version 3.1), muscle function during gait was estimated using SO and CMC in 6 subjects in each model and validated against experimental muscle activations and joint torques. Experimental and simulated activation agreement was sensitive to optimization technique for the soleus and tibialis anterior. Knee extension torque error was greater with CMC than SO. Muscle forces, activations, and co-contraction indices tended to be higher with CMC and more sensitive to model choice. CMC's inclusion of passive muscle forces, muscle activation-contraction dynamics, and a proportional-derivative controller to track kinematics contributes to these differences. Model and optimization technique choices should be validated using experimental activations collected simultaneously with the data used to generate the simulation.

2.
J Appl Biomech ; 32(5): 487-503, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27341083

RESUMO

Sit-to-stand transfer is a common task that is challenging for older adults and others with musculoskeletal impairments. Associated joint torques and muscle activations have been analyzed two-dimensionally, neglecting possible three-dimensional (3D) compensatory movements in those who struggle with sit-to-stand transfer. Furthermore, how muscles accelerate an individual up and off the chair remains unclear; such knowledge could inform rehabilitation strategies. We examined muscle forces, muscleinduced accelerations, and interlimb muscle force differences during sit-to-stand transfer in young, healthy adults. Dynamic simulations were created using a custom 3D musculoskeletal model; static optimization and induced acceleration analysis were used to determine muscle forces and their induced accelerations, respectively. The gluteus maximus generated the largest force (2009.07 ± 277.31 N) and was a main contributor to forward acceleration of the center of mass (COM) (0.62 ± 0.18 m/s(2)), while the quadriceps opposed it. The soleus was a main contributor to upward (2.56 ± 0.74 m/s(2)) and forward acceleration of the COM (0.62 ± 0.33 m/s(2)). Interlimb muscle force differences were observed, demonstrating lower limb symmetry cannot be assumed during this task, even in healthy adults. These findings establish a baseline from which deficits and compensatory strategies in relevant populations (eg, elderly, osteoarthritis) can be identified.


Assuntos
Extremidade Inferior/fisiologia , Movimento/fisiologia , Músculo Esquelético/fisiologia , Aceleração , Fenômenos Biomecânicos , Feminino , Voluntários Saudáveis , Humanos , Masculino , Torque , Adulto Jovem
3.
PLoS One ; 16(12): e0261862, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34965270

RESUMO

BACKGROUND: Older adults and individuals with knee osteoarthritis (KOA) often exhibit reduced locomotor function and altered muscle activity. Identifying age- and KOA-related changes to the modular control of gait may provide insight into the neurological mechanisms underlying reduced walking performance in these populations. The purpose of this pilot study was to determine if the modular control of walking differs between younger and older adults without KOA and adults with end-stage KOA. METHODS: Kinematic, kinetic, and electromyography data were collected from ten younger (23.5 ± 3.1 years) and ten older (63.5 ± 3.4 years) adults without KOA and ten adults with KOA (64.0 ± 4.0 years) walking at their self-selected speed. Separate non-negative matrix factorizations of 500 bootstrapped samples determined the number of modules required to reconstruct each participant's electromyography. One-way Analysis of Variance tests assessed the effect of group on walking speed and the number of modules. Kendall rank correlations (τb) assessed the association between the number of modules and self-selected walking speed. RESULTS: The number of modules required in the younger adults (3.2 ± 0.4) was greater than in the individuals with KOA (2.3 ± 0.7; p = 0.002), though neither cohorts' required number of modules differed significantly from the unimpaired older adults (2.7 ± 0.5; p ≥ 0.113). A significant association between module number and walking speed was observed (τb = 0.350, p = 0.021) and individuals with KOA walked significantly slower (0.095 ± 0.21 m/s) than younger adults (1.24 ± 0.15 m/s; p = 0.005). Individuals with KOA also exhibited altered module activation patterns and composition (which muscles are associated with each module) compared to unimpaired adults. CONCLUSION: These findings suggest aging alone may not significantly alter modular control; however, the combined effects of knee osteoarthritis and aging may together impair the modular control of gait.


Assuntos
Marcha , Articulação do Joelho/fisiopatologia , Músculo Esquelético/fisiopatologia , Osteoartrite do Joelho/fisiopatologia , Adulto , Idoso , Fenômenos Biomecânicos , Feminino , Humanos , Pessoa de Meia-Idade , Projetos Piloto , Velocidade de Caminhada , Adulto Jovem
4.
Comput Methods Biomech Biomed Engin ; 23(11): 765-772, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32469249

RESUMO

Populations with lower extremity muscle weakness have difficulty performing the sit-to-stand (STS) transfer. The degree of weakness that can be tolerated before compromising the ability to perform this task is unknown. Using dynamic simulations, we investigated the effects of weakness before changes in kinematics/kinetics would be required. Lower extremity muscles were weakened globally and individually and muscle forces were re-estimated as the model tracked original task kinematics/kinetics. The STS transfer was sensitive to quadriceps and plantarflexor weakness, suggesting that strengthening these muscles or changing kinematics are essential for populations who have difficulty rising from a chair independently.


Assuntos
Debilidade Muscular , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Extremidade Inferior , Masculino , Músculo Esquelético/fisiologia , Adulto Jovem
5.
Ann Biomed Eng ; 46(4): 579-589, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29340933

RESUMO

Stair descent (SD) is a common, difficult task for populations who are elderly or have orthopaedic pathologies. Joint torques of young, healthy populations during SD increase at the hip and ankle with increasing speed but not at the knee, contrasting torque patterns during gait. To better understand the sources of the knee torque pattern, we used dynamic simulations to estimate knee muscle forces and how they modulate center of mass (COM) acceleration across SD speeds (slow, self-selected, and fast) in young, healthy adults. The vastus lateralis and vastus medialis forces decreased from slow to self-selected speeds as the individual lowered to the next step. Since the vasti are primary contributors to vertical support during SD, they produced lower forces at faster speeds due to the lower need for vertical COM support observed at faster speeds. In contrast, the semimembranosus and rectus femoris forces increased across successive speeds, allowing the semimembranosus to increase acceleration downward and forward and the rectus femoris to provide more vertical support and resistance to forward progression as SD speed increased. These results demonstrate the utility of dynamic simulations to extend beyond traditional inverse dynamics analyses to gain further insight into muscle mechanisms during tasks like SD.


Assuntos
Articulação do Joelho/fisiologia , Modelos Biológicos , Força Muscular/fisiologia , Músculo Quadríceps/fisiologia , Subida de Escada/fisiologia , Aceleração , Adulto , Feminino , Marcha , Humanos , Masculino
6.
Ann Biomed Eng ; 45(11): 2635-2647, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28779473

RESUMO

With more than 29,000 OpenSim users, several musculoskeletal models with varying levels of complexity are available to study human gait. However, how different model parameters affect estimated joint and muscle function between models is not fully understood. The purpose of this study is to determine the effects of four OpenSim models (Gait2392, Lower Limb Model 2010, Full-Body OpenSim Model, and Full Body Model 2016) on gait mechanics and estimates of muscle forces and activations. Using OpenSim 3.1 and the same experimental data for all models, six young adults were scaled in each model, gait kinematics were reproduced, and static optimization estimated muscle function. Simulated measures differed between models by up to 6.5° knee range of motion, 0.012 Nm/Nm peak knee flexion moment, 0.49 peak rectus femoris activation, and 462 N peak rectus femoris force. Differences in coordinate system definitions between models altered joint kinematics, influencing joint moments. Muscle parameter and joint moment discrepancies altered muscle activations and forces. Additional model complexity yielded greater error between experimental and simulated measures; therefore, this study suggests Gait2392 is a sufficient model for studying walking in healthy young adults. Future research is needed to determine which model(s) is best for tasks with more complex motion.


Assuntos
Modelos Biológicos , Músculo Esquelético/fisiologia , Adulto , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Simulação por Computador , Eletromiografia , Feminino , Marcha/fisiologia , Articulação do Quadril/fisiologia , Humanos , Articulação do Joelho/fisiologia , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA