RESUMO
Chronic stress exerts profound negative effects on cognitive and emotional behaviours and is a major risk factor for the development of neuropsychiatric disorders. However, the molecular links between chronic stress and its deleterious effects on neuronal and synaptic function remain elusive. Here, using a combination of in vitro and in vivo approaches, we demonstrate that the upregulation of miR-186-5p triggered by chronic stress may be a key mediator of such changes, leading to synaptic dysfunction. Our results show that the expression levels of miR-186-5p are increased both in the prefrontal cortex (PFC) of mice exposed to chronic stress and in cortical neurons chronically exposed to dexamethasone. Additionally, viral overexpression of miR-186-5p in the PFC of naïve mice induces anxiety- and depressive-like behaviours. The upregulation of miR-186-5p through prolonged glucocorticoid receptor activation in vitro, or in a mouse model of chronic stress, differentially affects glutamatergic and GABAergic synaptic transmission, causing an imbalance in excitation/inhibition that leads to altered neuronal network activity. At glutamatergic synapses, we observed both a reduction in synaptic AMPARs and synaptic transmission, whereas GABAergic synaptic transmission was strengthened. These changes could be rescued in vitro by a miR-186-5p inhibitor. Overall, our results establish a novel molecular link between chronic glucocorticoid receptor activation, the upregulation of miR-186-5p and the synaptic changes induced by chronic stress, that may be amenable to therapeutic intervention.
RESUMO
Usher syndrome (USH) is the most common cause of deafblindness. USH is autosomal recessively inherited and characterized by rod-cone dystrophy or retinitis pigmentosa (RP), often accompanied by sensorineural hearing loss. Variants in >15 genes have been identified as causative for clinically and genetically distinct subtypes. Among the ultra-rare and recently discovered genes is ARSG, coding for the lysosomal sulfatase Arylsulfatase G. This subtype was assigned as "USH IV" with a late onset of RP and usually late-onset progressive SNHL without vestibular involvement. Here, we describe nine new subjects and the clinical description of four cases with the USH IV phenotype bearing seven novel and two known pathogenic variants. Functional experiments indicated the complete loss of sulfatase enzymatic activity upon ectopic expression of mutated ARSG cDNA. Interestingly, we identified a homozygous missense variant, p.(Arg99His), previously described in dogs with neuronal ceroid lipofuscinosis. Our study expands the genetic landscape of ARSG-USH IV and the number of known subjects by more than 30%. These findings highlight that USH IV likely has been underdiagnosed and emphasize the need to test molecularly unresolved subjects with deafblindness syndrome. Finally, testing of ARSG should be considered for the genetic work-up of apparent isolated inherited retinal diseases.
RESUMO
Synaptic scaling allows neurons to adjust synaptic strength in response to chronic alterations in neuronal activity. A new study in PLOS Biology identifies a pathway that synergizes protein synthesis and degradation with remodeling of the microRNA (miRNA)-induced silencing complex (miRISC) to mediate synaptic scaling.
Assuntos
MicroRNAs , Biossíntese de Proteínas , MicroRNAs/metabolismo , Neurônios/metabolismoRESUMO
PURPOSE: Retinitis pigmentosa (RP) comprises a genetically and clinically heterogeneous group of inherited retinal degenerations, where 20-30% of patients exhibit extra-ocular manifestations (syndromic RP). Understanding the genetic profile of RP has important implications for disease prognosis and genetic counseling. This study aimed to characterize the genetic profile of syndromic RP in Portugal. METHODS: Multicenter, retrospective cohort study. Six Portuguese healthcare providers identified patients with a clinical diagnosis of syndromic RP and available genetic testing results. All patients had been previously subjected to a detailed ophthalmologic examination and clinically oriented genetic testing. Genetic variants were classified according to the American College of Medical Genetics and Genomics; only likely pathogenic or pathogenic variants were considered relevant for disease etiology. RESULTS: One hundred and twenty-two patients (53.3% males) from 100 families were included. Usher syndrome was the most frequent diagnosis (62.0%), followed by Bardet-Biedl (19.0%) and Senior-Løken syndromes (7.0%). Deleterious variants were identified in 86/100 families for a diagnostic yield of 86.0% (87.1% for Usher and 94.7% for Bardet-Biedl). A total of 81 genetic variants were identified in 25 different genes, 22 of which are novel. USH2A and MYO7A were responsible for most type II and type I Usher syndrome cases, respectively. BBS1 variants were the cause of Bardet-Biedl syndrome in 52.6% of families. Best-corrected visual acuity (BCVA) records were available at baseline and last visit for 99 patients (198 eyes), with a median follow-up of 62.0 months. The mean BCVA was 56.5 ETDRS letters at baseline (Snellen equivalent ~ 20/80), declining to 44.9 ETDRS letters (Snellen equivalent ~ 20/125) at the last available follow-up (p < 0.001). CONCLUSION: This is the first multicenter study depicting the genetic profile of syndromic RP in Portugal, thus contributing toward a better understanding of this heterogeneous disease group. Usher and Bardet-Biedl syndromes were found to be the most common types of syndromic RP in this large Portuguese cohort. A high diagnostic yield was obtained, highlighting current genetic testing capabilities in providing a molecular diagnosis to most affected individuals. This has major implications in determining disease-related prognosis and providing targeted genetic counseling for syndromic RP patients in Portugal.
Assuntos
Testes Genéticos , Mutação , Retinose Pigmentar , Humanos , Retinose Pigmentar/genética , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/epidemiologia , Portugal/epidemiologia , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Adulto , Adolescente , Adulto Jovem , Criança , Idoso , Linhagem , Síndromes de Usher/genética , Síndromes de Usher/diagnóstico , Síndromes de Usher/epidemiologia , Pré-Escolar , Análise Mutacional de DNA , Seguimentos , DNA/genética , Proteínas do Olho/genéticaRESUMO
Acute respiratory distress syndrome (ARDS) is a life-threatening lung injury that currently lacks effective clinical treatments. Evidence highlights the potential role of glycogen synthase kinase-3 (GSK-3) inhibition in mitigating severe inflammation. The inhibition of GSK-3α/ß by CHIR99021 promoted fetal lung progenitor proliferation and maturation of alveolar epithelial cells (AECs). The precise impact of CHIR99021 in lung repair and regeneration during acute lung injury (ALI) remains unexplored. This study intends to elucidate the influence of CHIR99021 on AEC behaviour during the peak of the inflammatory phase of ALI and, after its attenuation, during the repair and regeneration stage. Furthermore, a long-term evaluation was conducted post CHIR99021 treatment at a late phase of the disease. Our results disclosed the role of GSK-3α/ß inhibition in promoting AECI and AECII proliferation. Later administration of CHIR99021 during ALI progression contributed to the transdifferentiation of AECII into AECI and an AECI/AECII increase, suggesting its contribution to the renewal of the alveolar epithelial population and lung regeneration. This effect was confirmed to be maintained histologically in the long term. These findings underscore the potential of targeted therapies that modulate GSK-3α/ß inhibition, offering innovative approaches for managing acute lung diseases, mostly in later stages where no treatment is available.
Assuntos
Lesão Pulmonar Aguda , Células Epiteliais Alveolares , Piridinas , Pirimidinas , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Quinase 3 da Glicogênio Sintase , Pulmão/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Proliferação de CélulasRESUMO
PURPOSE: Phenotypic heterogeneity with variable severity has been reported in female carriers of retinitis pigmentosa GTPase regulator (RPGR) mutations, including a male-type phenotype. A phenomenon not fully understood is peripapillary retinal nerve fiber layer (pRNFL) thickening in male patients with RPGR-associated X-linked retinitis pigmentosa, especially in the temporal sector. We aim to describe the genetic spectrum, retinal phenotypes, and pRNFL thickness in a cohort of Caucasian RPGR-mutation heterozygotes. METHODS: A cross-sectional study was conducted at an inherited retinal degeneration (IRD) reference center in Portugal. Female patients heterozygous for clinically significant RPGR variants were identified using the IRD-PT registry. A complete ophthalmologic examination was performed, complemented by macular and peripapillary spectral domain optical coherence tomography (SD-OCT), ultra-widefield color fundus photography (UW-CFP), and ultra-widefield fundus autofluorescence (UW-FAF). The retinal phenotypes were graded according to previously described classifications. The pRNFL thickness across the superior, inferior, nasal, and temporal quadrants was compared to the Spectralis® RNFL age-adjusted reference database. RESULTS: Forty-eight eyes from 24 females (10 families) were included in the study. Genetic analysis yielded 8 distinct clinically significant frameshift variants in RPGR gene, 3 of which herein reported for the first time. No association was found between mutation location and best-corrected visual acuity (BCVA) or retinal phenotype. Age was associated with worse BCVA and more advanced phenotypes on SD-OCT, UW-CFP, and UW-FAF. Seven women (29.17%) presented a male-type phenotype on UW-FAF in at least one eye. An association was found between UW-FAF and pRNFL thickness in the temporal sector (p = 0.003), with the most advanced fundus autofluorescence phenotypes showing increased pRNFL thickness in this sector. CONCLUSION: This study expands the genetic landscape of RPGR-associated disease by reporting 3 novel clinically significant variants. We have shown that clinically severe phenotypes are not uncommon among female carriers. Furthermore, we provide novel insights into pRNFL changes observed in RPGR heterozygotes that mimic what has been reported in male patients.
Assuntos
Degeneração Retiniana , Retinose Pigmentar , Feminino , Humanos , Masculino , Estudos Transversais , Proteínas do Olho/genética , Heterozigoto , Fenótipo , Retina , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genética , Tomografia de Coerência Óptica/métodos , Fibras Nervosas , Neurônios RetinianosRESUMO
Neisseria gonorrhoeae is an obligate human pathogenic bacterium responsible for gonorrhea, a sexually transmitted disease. The bacterial peroxidase, an enzyme present in the periplasm of this bacterium, detoxifies the cells against hydrogen peroxide and constitutes one of the primary defenses against exogenous and endogenous oxidative stress in this organism. The 38 kDa heterologously produced bacterial peroxidase was crystallized in the mixed-valence state, the active state, at pH 6.0, and the crystals were soaked with azide, producing the first azide-inhibited structure of this family of enzymes. The enzyme binds exogenous ligands such as cyanide and azide, which also inhibit the catalytic activity by coordinating the P heme iron, the active site, and competing with its substrate, hydrogen peroxide. The inhibition constants were estimated to be 0.4 ± 0.1 µM and 41 ± 5 mM for cyanide and azide, respectively. Imidazole also binds and inhibits the enzyme in a more complex mechanism by binding to P and E hemes, which changes the reduction potential of the latest heme. Based on the structures now reported, the catalytic cycle of bacterial peroxidases is revisited. The inhibition studies and the crystal structure of the inhibited enzyme comprise the first platform to search and develop inhibitors that target this enzyme as a possible new strategy against N. gonorrhoeae.
Assuntos
Peroxidase , Peroxidases , Humanos , Peroxidases/metabolismo , Neisseria gonorrhoeae , Peróxido de Hidrogênio/metabolismo , Azidas/química , Heme/metabolismoRESUMO
The Cellulosome is an intricate macromolecular protein complex that centralizes the cellulolytic efforts of many anaerobic microorganisms through the promotion of enzyme synergy and protein stability. The assembly of numerous carbohydrate processing enzymes into a macromolecular multiprotein structure results from the interaction of enzyme-borne dockerin modules with repeated cohesin modules present in noncatalytic scaffold proteins, termed scaffoldins. Cohesin-dockerin (Coh-Doc) modules are typically classified into different types, depending on structural conformation and cellulosome role. Thus, type I Coh-Doc complexes are usually responsible for enzyme integration into the cellulosome, while type II Coh-Doc complexes tether the cellulosome to the bacterial wall. In contrast to other known cellulosomes, cohesin types from Bacteroides cellulosolvens, a cellulosome-producing bacterium capable of utilizing cellulose and cellobiose as carbon sources, are reversed for all scaffoldins, i.e., the type II cohesins are located on the enzyme-integrating primary scaffoldin, whereas the type I cohesins are located on the anchoring scaffoldins. It has been previously shown that type I B. cellulosolvens interactions possess a dual-binding mode that adds flexibility to scaffoldin assembly. Herein, we report the structural mechanism of enzyme recruitment into B. cellulosolvens cellulosome and the identification of the molecular determinants of its type II cohesin-dockerin interactions. The results indicate that, unlike other type II complexes, these possess a dual-binding mode of interaction, akin to type I complexes. Therefore, the plasticity of dual-binding mode interactions seems to play a pivotal role in the assembly of B. cellulosolvens cellulosome, which is consistent with its unmatched complexity and size.
Assuntos
Proteínas de Bactérias/metabolismo , Bacteroides/metabolismo , Proteínas de Ciclo Celular/metabolismo , Celulossomas/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Clostridiales/metabolismo , Proteínas de Bactérias/genética , Bacteroides/genética , Bacteroides/crescimento & desenvolvimento , Proteínas de Ciclo Celular/genética , Celobiose/metabolismo , Celulose/metabolismo , Proteínas Cromossômicas não Histona/genética , Clostridiales/genética , Clostridiales/crescimento & desenvolvimento , CoesinasRESUMO
Although strategies for directed differentiation of human pluripotent stem cells (hPSCs) into lung and airway have been established, terminal maturation of the cells remains a vexing problem. We show here that in collagen I 3D cultures in the absence of glycogen synthase kinase 3 (GSK3) inhibition, hPSC-derived lung progenitors (LPs) undergo multilineage maturation into proximal cells, type I alveolar epithelial cells and morphologically mature type II cells. Enhanced cell cycling, one of the signaling outputs of GSK3 inhibition, plays a role in the maturation-inhibiting effect of GSK3 inhibition. Using this model, we show NOTCH signaling induced a distal cell fate at the expense of a proximal and ciliated cell fate, whereas WNT signaling promoted a proximal club cell fate, thus implicating both signaling pathways in proximodistal specification in human lung development. These findings establish an approach to achieve multilineage maturation of lung and airway cells from hPSCs, demonstrate a pivotal role of GSK3 in the maturation of lung progenitors and provide novel insight into proximodistal specification during human lung development.
Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Linhagem da Célula , Quinase 3 da Glicogênio Sintase/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Pulmão/citologia , Piridinas/farmacologia , Animais , Padronização Corporal/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Genoma Humano , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Camundongos , Receptores Notch/metabolismo , Reprodutibilidade dos Testes , Via de Sinalização Wnt/efeitos dos fármacosRESUMO
PURPOSE: Retinitis pigmentosa (RP) corresponds to a group of inherited retinal disorders where progressive rod-cone degeneration is observed. Cystoid macular edema (CME) and vitreomacular interface disorders (VMID) are known to complicate the RP phenotype, challenging an age-old concept of retained central visual acuity. The reported prevalence of these changes varies greatly among different studies. We aim to describe the frequency of CME and VMID and identify predictors of these changes in a cohort of Caucasian patients with genetically solved syndromic (sRP) and non-syndromic RP (nsRP). METHODS: Cross-sectional study of patients with genetically solved sRP or nsRP. Genetic testing was clinically oriented in all probands and coordinated by a medical geneticist. The presence/absence of CME and VMIDs such as epiretinal membrane (ERM), vitreomacular traction (VMT), lamellar hole (LH), macular hole (MH), and macular pseudohole (MPH), and the integrity of the neurosensory retina and retinal pigment epithelium were evaluated in individual macular SD-OCT b-scans. Mixed-effects regression analysis models were used to identify significant predictors of BCVA, CME, and VMID. Significance was considered at α < 0.05. RESULTS: We included 250 eyes from 125 patients. Mean age was 44.9 ± 15.7 years and 55.2% were male. Eighty-eight patients had nsRP and 37 had sRP. Median BCVA was 0.5 (0.2-1.3) logMAR. CME was found in 17.1% of eyes, while ERM was found in 54.3% of eyes. The frequency of CME (p = 0.45) and ERM (p = 0.07) did not differ between sRP and nsRP patients, nor across different inheritance patterns. Mixed-effects univariate linear regression identified age (p = 0.04), cataract surgery (p < 0.01), and loss of integrity of outer retinal layers (p < 0.01) as significant predictors of lower visual acuity, while increased foveal thickness (p < 0.01) and the presence of CME (p = 0.04) were predictors of higher visual acuity. On mixed-effects multivariable analysis, only increased foveal thickness was significantly associated with better visual acuity (p < 0.01). CONCLUSION: We found that the burden of ERM and CME in RP patients is high, highlighting the importance of screening for these potentially treatable conditions to improve the quality of life of RP patients.
Assuntos
Membrana Epirretiniana , Edema Macular , Retinose Pigmentar , Estudos Transversais , Feminino , Humanos , Masculino , Qualidade de Vida , Estudos Retrospectivos , Tomografia de Coerência Óptica , Acuidade VisualRESUMO
PURPOSE: Sector retinitis pigmentosa (RP) is a rare form of rod-cone degeneration typically associated with mutations in the RHO gene. We describe six unrelated patients presenting with this atypical phenotype in association with biallelic mutations in EYS gene. METHODS: Multinational, multicentre cross-sectional case series. Patients with biallelic disease-causing variants in EYS and a clinical diagnosis of sector RP were recruited from specialized centres in Portugal and Brazil. All patients underwent a comprehensive ophthalmologic examination complemented by deep phenotyping. Peripheral blood samples were collected from all probands and available relatives for genetic analysis. Genetic counselling was provided to all subjects. RESULTS: Seven disease-causing variants (4 pathogenic; 3 likely pathogenic) were identified in 6 unrelated female patients. Best-corrected visual acuity ranged from 75 to 85 ETDRS letters. All eyes showed bilateral and symmetrical areas of outer retinal atrophy distributed along the inferior vascular arcades and extending temporally and/or nasally in a crescent-shaped pattern. On fundus autofluorescence (AF), a foveal-sparing curvilinear band of hyperAF encroaching the optic nerve head and extending temporally was seen in 4 patients. The remaining 2 presented bilateral and symmetrical patches of hypoAF inside crescent-shaped areas of hyperAF along the inferior temporal vascular arcade. Visual field testing revealed superior visual field defects of varying extents, always in close association with the fundus AF findings. CONCLUSIONS: Even though EYS has only recently been listed as a cause of the sector RP phenotype, we believe that this presentation is not infrequent and should be considered an important differential for sector RP.
Assuntos
Distrofias de Cones e Bastonetes , Retinose Pigmentar , Estudos Transversais , Análise Mutacional de DNA , Proteínas do Olho/genética , Feminino , Humanos , Mutação , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genéticaRESUMO
INTRODUCTION: The purpose of this study was to compare clinical/demographic functional testing and multimodal imaging features between genetically solved and genetically unsolved nonsyndromic retinitis pigmentosa (nsRP) patients. METHODS: A cross-sectional study was conducted at an inherited retinal dystrophies reference center. Consecutive patients with nsRP and available genetic testing results performed between 2018 and 2020 were included. Genetic testing was clinically oriented, and variants were classified according to the American College of Medical Genetics and Genomics. Only class IV or V variants were considered disease-causing. Clinical/demographic, functional, and imaging features were compared between genetically unsolved (G1) and genetically solved (G2) patients. RESULTS: A total of 175 patients (146 families) were included: 68 patients (59 families) in G1 and 107 patients (87 families) in G2. First symptoms <25 years, consanguinity, evidence for a particular inheritance pattern, and the absence of indicators for phenocopies were significantly more prevalent in G2. No significant differences were observed on best-corrected visual acuity. The visual field index and mean central retinal layer thickness were significantly higher in G1. The frequency of atypical features on multimodal imaging did not differ between groups. CONCLUSION: Individual clinical/demographic functional testing and multimodal imaging features should be considered when counseling patients about the probability of identifying disease-causing variants.
Assuntos
Retinose Pigmentar , Estudos Transversais , Demografia , Humanos , Imagem Multimodal , Mutação , Fenótipo , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genéticaRESUMO
Homeostatic synaptic scaling is a negative feedback response to fluctuations in synaptic strength induced by developmental or learning-related processes, which maintains neuronal activity stable. Although several components of the synaptic scaling apparatus have been characterized, the intrinsic regulatory mechanisms promoting scaling remain largely unknown. MicroRNAs may contribute to posttranscriptional control of mRNAs implicated in different stages of synaptic scaling, but their role in these mechanisms is still undervalued. Here, we report that chronic blockade of glutamate receptors of the AMPA and NMDA types in hippocampal neurons in culture induces changes in the neuronal mRNA and miRNA transcriptomes, leading to synaptic upscaling. Specifically, we show that synaptic activity blockade persistently down-regulates miR-186-5p. Moreover, we describe a conserved miR-186-5p-binding site within the 3'UTR of the mRNA encoding the AMPA receptor GluA2 subunit, and demonstrate that GluA2 is a direct target of miR-186-5p. Overexpression of miR-186 decreased GluA2 surface levels, increased synaptic expression of GluA2-lacking AMPA receptors, and blocked synaptic scaling, whereas inhibition of miR-186-5p increased GluA2 surface levels and the amplitude and frequency of AMPA receptor-mediated currents, and mimicked excitatory synaptic scaling induced by synaptic inactivity. Our findings elucidate an activity-dependent miRNA-mediated mechanism for regulation of AMPA receptor expression.
Assuntos
MicroRNAs/genética , Neurônios/metabolismo , Receptores de AMPA/genética , Regiões 3' não Traduzidas , Animais , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores/fisiologia , Células HEK293 , Hipocampo/metabolismo , Homeostase , Humanos , MicroRNAs/metabolismo , Plasticidade Neuronal/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptores de AMPA/metabolismo , Receptores de AMPA/fisiologia , Sinapses/metabolismoRESUMO
Proteasome activity at the excitatory synapse plays an important role in neuronal communication. The proteasome translocation to synapses is mediated by neuronal activity, in particular the activation of N-methyl-d-aspartate receptors (NMDARs). These receptors are composed of different subunits with distinct trafficking properties that provide various signalling and plasticity features to the synapse. Yet whether the interplay between the proteasome and NMDAR relies on specific subunit properties remain unclear. Using a combination of single molecule and immunocytochemistry imaging approaches in rat hippocampal neurons, we unveil a specific interplay between GluN2B-containing NMDARs (GluN2B-NMDARs) and the synaptic proteasome. Sustained proteasome activation specifically increases GluN2B-NMDAR (not GluN2A-NMDAR) lateral diffusion. In addition, when GluN2B-NMDAR expression is downregulated, the proteasome localization decreases at glutamatergic synapses. Collectively, our data fuel a model in which the cellular dynamics and location of GluN2B-NMDARs and proteasome are intermingled, shedding new lights on the NMDAR-dependent regulation of synaptic adaptation.
Assuntos
Complexo de Endopeptidases do Proteassoma , Receptores de N-Metil-D-Aspartato , Animais , Hipocampo/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Sinapses/metabolismoRESUMO
Interactions of glycan-specific epitopes to human lectin receptors represent novel immune checkpoints for investigating cancer and infection diseases. By employing a multidisciplinary approach that combines isothermal titration calorimetry, NMR spectroscopy, molecular dynamics simulations, and X-ray crystallography, we investigated the molecular determinants that govern the recognition of the tumour and pathogenic glycobiomarker LacdiNAc (GalNAcß1-4GlcNAc, LDN), including their comparison with the ubiquitous LacNAc epitope (Galß1-4GlcNAc, LN), by two human immune-related lectins, galectin-3 (hGal-3) and the macrophage galactose C-type lectin (hMGL). A different mechanism of binding and interactions was observed for the hGal-3/LDN and hMGL/LDN complexes, which explains the remarkable difference in the binding specificity of LDN and LN by these two lectins. The new structural clues reported herein are fundamental for the chemical design of mimetics targeting hGal-3/hMGL recognition process.
Assuntos
Lactose , Neoplasias , Epitopos , Humanos , Lactose/análogos & derivados , Polissacarídeos , Ligação ProteicaRESUMO
The hippocampus is a key brain region for memory formation. Metabotropic glutamate type 5 receptors (mGlu5R) are strongly expressed in CA1 pyramidal neurons and fine-tune synaptic plasticity. Accordingly, mGlu5R pharmacological manipulation may represent an attractive therapeutic strategy to manage hippocampal-related neurological disorders. Here, by means of a membrane yeast two-hybrid screening, we identified contactin-associated protein 1 (Caspr1), a type I transmembrane protein member of the neurexin family, as a new mGlu5R partner. We report that mGlu5R and Caspr1 co-distribute and co-assemble both in heterologous expression systems and in rat brain. Furthermore, downregulation of Caspr1 in rat hippocampal primary cultures decreased mGlu5R-mediated signaling. Finally, silencing Caspr1 expression in the hippocampus impaired the impact of mGlu5R on spatial memory. Our results indicate that Caspr1 plays a pivotal role controlling mGlu5R function in hippocampus-dependent memory formation. Hence, this new protein-protein interaction may represent novel target for neurological disorders affecting hippocampal glutamatergic neurotransmission.
Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Hipocampo/metabolismo , Memória , Multimerização Proteica , Receptor de Glutamato Metabotrópico 5/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/fisiologia , Hipocampo/fisiologia , Ratos , Receptor de Glutamato Metabotrópico 5/fisiologia , Transdução de Sinais , Transmissão SinápticaRESUMO
Neuropsychiatric disorders share susceptibility genes, suggesting a common origin. One such gene is CNTNAP2 encoding contactin-associated protein 2 (CASPR2), which harbours mutations associated to autism, schizophrenia, and intellectual disability. Antibodies targeting CASPR2 have also been recently described in patients with several neurological disorders, such as neuromyotonia, Morvan's syndrome, and limbic encephalitis. Despite the clear implication of CNTNAP2 and CASPR2 in neuropsychiatric disorders, the pathogenic mechanisms associated with alterations in CASPR2 function are unknown. Here, we show that Caspr2 is expressed in excitatory synapses in the cortex, and that silencing its expression in vitro or in vivo decreases the synaptic expression of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors and the amplitude of AMPA receptor-mediated currents. Furthermore, Caspr2 loss of function blocks synaptic scaling in vitro and experience-dependent homoeostatic synaptic plasticity in the visual cortex. Patient CASPR2 antibodies decrease the dendritic levels of Caspr2 and synaptic AMPA receptor trafficking, and perturb excitatory transmission in the visual cortex. These results suggest that mutations in CNTNAP2 may contribute to alterations in AMPA receptor function and homoeostatic plasticity, and indicate that antibodies from anti-CASPR2 encephalitis patients affect cortical excitatory transmission.
Assuntos
Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de AMPA/metabolismo , Transmissão Sináptica/fisiologia , Idoso , Animais , Transtorno Autístico/genética , Autoanticorpos/imunologia , Autoantígenos/imunologia , Encefalite/imunologia , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Ratos , Ratos Wistar , Córtex Visual/metabolismoRESUMO
For the first time, 1,2-dimethyl-3-ethylimidazolium iodide (1a) catalyzes the ring opening of the bicyclic amidine system of DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) or DBN (1,5-diazabicyclo[4.3.0]non-5-ene) on reaction with aldehydes. The mechanism here proposed involves an N-heterocyclic olefin (NHO) catalytic species that acts as a nucleophile to promote the cyclic amidine ring opening. The resulting ε-caprolactam- and γ-lactam-derived imines were obtained in moderate to excellent yields (28-99%) and reduced to the corresponding amines by sodium borohydride. Confirmation of the imine product was achieved via single-crystal X-ray diffraction studies.
RESUMO
Deconstruction of cellulose, the most abundant plant cell wall polysaccharide, requires the cooperative activity of a large repertoire of microbial enzymes. Modular cellulases contain non-catalytic type A carbohydrate-binding modules (CBMs) that specifically bind to the crystalline regions of cellulose, thus promoting enzyme efficacy through proximity and targeting effects. Although type A CBMs play a critical role in cellulose recycling, their mechanism of action remains poorly understood. Here we produced a library of recombinant CBMs representative of the known diversity of type A modules. The binding properties of 40 CBMs, in fusion with an N-terminal GFP domain, revealed that type A CBMs possess the ability to recognize different crystalline forms of cellulose and chitin over a wide range of temperatures, pH levels, and ionic strengths. A Spirochaeta thermophila CBM64, in particular, displayed plasticity in its capacity to bind both crystalline and soluble carbohydrates under a wide range of extreme conditions. The structure of S. thermophila StCBM64C revealed an untwisted, flat, carbohydrate-binding interface comprising the side chains of four tryptophan residues in a co-planar linear arrangement. Significantly, two highly conserved asparagine side chains, each one located between two tryptophan residues, are critical to insoluble and soluble glucan recognition but not to bind xyloglucan. Thus, CBM64 compact structure and its extended and versatile ligand interacting platform illustrate how type A CBMs target their appended plant cell wall-degrading enzymes to a diversity of recalcitrant carbohydrates under a wide range of environmental conditions.
Assuntos
Proteínas de Bactérias/metabolismo , Celulases/metabolismo , Spirochaeta/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Metabolismo dos Carboidratos , Parede Celular/metabolismo , Celulases/química , Celulose/metabolismo , Cristalografia por Raios X , Glucanos/metabolismo , Modelos Moleculares , Concentração Osmolar , Ligação Proteica , Conformação Proteica , Spirochaeta/química , Temperatura , Xilanos/metabolismoRESUMO
The functional and biological significance of the selected CASP12 targets are described by the authors of the structures. The crystallographers discuss the most interesting structural features of the target proteins and assess whether these features were correctly reproduced in the predictions submitted to the CASP12 experiment.