Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Neurobiol ; 55(11): 8637-8650, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29582397

RESUMO

The specific roles of Notch in progressive adulthood neurodegenerative disorders have begun to be unraveled in recent years. A number of independent studies have shown significant increases of Notch expression in brains from patients at later stages of sporadic Alzheimer's disease (AD). However, the impact of Notch canonical signaling activation in the pathophysiology of AD is still elusive. To further investigate this issue, 2-month-old wild-type (WT) and hemizygous McGill-R-Thy1-APP rats (Tg(+/-)) were injected in CA1 with lentiviral particles (LVP) expressing the transcriptionally active fragment of Notch, known as Notch Intracellular Domain (NICD), (LVP-NICD), or control lentivirus particles (LVP-C). The Tg(+/-) rat model captures presymptomatic aspects of the AD pathology, including intraneuronal amyloid beta (Aß) accumulation and early cognitive deficits. Seven months after LVP administration, Morris water maze test was performed, and brains isolated for biochemical and histological analysis. Our results showed a learning impairment and a worsening of spatial memory in LVP-NICD- as compared to LVP-C-injected Tg(+/-) rats. In addition, immuno histochemistry, ELISA multiplex, Western blot, RT-qPCR, and 1H-NMR spectrometry of cerebrospinal fluid (CSF) indicated that chronic expression of NICD promoted hippocampal vessel thickening with accumulation of Aß in brain microvasculature, alteration of blood-brain barrier (BBB) permeability, and a decrease of CSF glucose levels. These findings suggest that, in the presence of early Aß pathology, expression of NICD may contribute to the development of microvascular abnormalities, altering glucose transport at the BBB with impact on early decline of spatial learning and memory.


Assuntos
Doença de Alzheimer/patologia , Vasos Sanguíneos/patologia , Glucose/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/patologia , Receptores Notch/química , Receptores Notch/metabolismo , Memória Espacial , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/complicações , Doença de Alzheimer/fisiopatologia , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Modelos Animais de Doenças , Vetores Genéticos/metabolismo , Células HEK293 , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Inflamação/patologia , Lentivirus/genética , Transtornos da Memória/complicações , Transtornos da Memória/fisiopatologia , Microvasos/patologia , Domínios Proteicos , Espectroscopia de Prótons por Ressonância Magnética , Ratos Transgênicos , Ratos Wistar
2.
Front Cell Neurosci ; 7: 53, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23641196

RESUMO

Neuroinflammation has received increased attention as a target for putative neuroprotective therapies in Parkinson's Disease (PD). Two prototypic pro-inflammatory cytokines interleukin-1ß (IL-1) and tumor necrosis factor-α (TNF) have been implicated as main effectors of the functional consequences of neuroinflammation on neurodegeneration in PD models. In this review, we describe that the functional interaction between these cytokines in the brain differs from the periphery (e.g., their expression is not induced by each other) and present data showing predominantly a toxic effect of these cytokines when expressed at high doses and for a sustained period of time in the substantia nigra pars compacta (SN). In addition, we highlight opposite evidence showing protective effects of these two main cytokines when conditions of duration, amount of expression or state of activation of the target or neighboring cells are changed. Furthermore, we discuss these results in the frame of previous disappointing results from anti-TNF-α clinical trials against Multiple Sclerosis, another neurodegenerative disease with a clear neuroinflammatory component. In conclusion, we hypothesize that the available evidence suggests that the duration and dose of IL-1ß or TNF-α expression is crucial to predict their functional effect on the SN. Since these parameters are not amenable for measurement in the SN of PD patients, we call for an in-depth analysis to identify downstream mediators that could be common to the toxic (and not the protective) effects of these cytokines in the SN. This strategy could spare the possible neuroprotective effect of these cytokines operative in the patient at the time of treatment, increasing the probability of efficacy in a clinical setting. Alternatively, receptor-specific agonists or antagonists could also provide a way to circumvent undesired effects of general anti-inflammatory or specific anti-IL-1ß or TNF-α therapies against PD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA