Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 251(Pt 1): 118525, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38408629

RESUMO

Cheese whey (CW) and dairy manure (DM) are the main residues from the dairy industry, both of which can led to significant negative environment impacts if not properly managed. However, their combined anaerobic digestion represents an opportunity to obtain bioenergy and a stabilised material as a soil improver on the farm. Biochemical potential of methane (BMP) assays were carried out at psychrophilic conditions (20 °C) to analyse the influence on biomethane production of different CW:DM mixtures (% w/w) at different of inoculum-to-substrate ratios (ISR). Based on the BMP results, a life cycle assessment (LCA) of the cheese manufacturing process was carried out considering two scenarios (i) considering the current process, where propane gas and electricity are used for cheese production (ii) the incorporation of the biogas generated in the cheese production process in the company. BMP results showed that the best mixture between CW and DM was 65:35 (weight basis) at an organic load of 0.6 gVS/L (ISR of X). The LCA showed that CW and DM anaerobic digestion allowed to reduce the cheese manufacturing carbon footprint from through the substitution of propane by the biogas produced, changing from 5.5 to 3.1 kg CO2-eq/kg cheese produced, which indicates that according to the monthly production (633.6 kg) it would stop emitting about 1519 kg CO2-eq, i.e. a saving in terms of emissions of approximately 43,6% of the total currently generated.


Assuntos
Biocombustíveis , Queijo , Indústria de Laticínios , Esterco , Soro do Leite , Esterco/análise , Queijo/análise , Queijo/microbiologia , Anaerobiose , Biocombustíveis/análise , Soro do Leite/química , Metano/análise , Animais
2.
Heliyon ; 10(5): e26476, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434373

RESUMO

Anaerobic digestion is a suitable technology to treat cheese whey (CW), a high-strength wastewater from cheesemaking. However, CW anaerobic digestion is limited by its high biodegradability, acidic pH, and lack of alkalinity. This publication evaluated the acidification risk of CW anaerobic digestion under psychrophilic and mesophilic conditions, aiming to improve digester design, operation, and decision-making when facing instability periods. To evaluate the acidification risk of CW anaerobic digestion, biochemical methane potential (BMP) tests were carried out at four different organic loads, each under psychrophilic (20 °C) and mesophilic (35 °C) conditions. Besides methane production, pH, soluble chemical oxygen demand, volatile fatty acid and alcohols were also monitored. Experimental results showed that CW can be successfully degraded under both temperature conditions, with methane yields of 389-436 mLCH4/gVS. The organic load had a greater impact on the accumulation of intermediate products than temperature, indicating that process inhibition by overloading is plausible under psychrophilic and mesophilic conditions. However, the degradation rate under mesophilic conditions was faster than under psychrophilic conditions. Experimental results also revealed a higher imbalance between fermentation and methanogenesis rate under psychrophilic conditions, which resulted in higher concentrations of intermediate products (volatile fatty acids and alcohols) and prolonged lower pHs. These results indicate that the degradation of intermediate products is less favourable under psychrophilic conditions compared to mesophilic conditions. This implies that psychrophilic digesters have a lower capacity to recover from process disturbances, increasing the risk of process underperformance or even failure under psychrophilic conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA