Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 26(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34641610

RESUMO

Integrin α4ß1 belongs to the leukocyte integrin family and represents a therapeutic target of relevant interest given its primary role in mediating inflammation, autoimmune pathologies and cancer-related diseases. The focus of the present work is the design, synthesis and characterization of new peptidomimetic compounds that are potentially able to recognize α4ß1 integrin and interfere with its function. To this aim, a collection of seven new cyclic peptidomimetics possessing both a 4-aminoproline (Amp) core scaffold grafted onto key α4ß1-recognizing sequences and the (2-methylphenyl)ureido-phenylacetyl (MPUPA) appendage, was designed, with the support of molecular modeling studies. The new compounds were synthesized through SPPS procedures followed by in-solution cyclization maneuvers. The biological evaluation of the new cyclic ligands in cell adhesion assays on Jurkat cells revealed promising submicromolar agonist activity in one compound, namely, the c[Amp(MPUPA)Val-Asp-Leu] cyclopeptide. Further investigations will be necessary to complete the characterization of this class of compounds.


Assuntos
Adesão Celular/efeitos dos fármacos , Integrina alfa4beta1/química , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Prolina/análogos & derivados , Humanos , Integrina alfa4beta1/antagonistas & inibidores , Células Jurkat , Ligantes , Modelos Moleculares , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Prolina/química , Prolina/farmacologia , Ligação Proteica , Conformação Proteica
2.
J Proteomics ; 288: 104983, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37536521

RESUMO

BRCA2 and RAD51 are two proteins that play a central role in homologous recombination (HR) and DNA double strand break (DSB) repair. BRCA2 assists RAD51 fibrillation and defibrillation through binding with its eight BRC repeats, with BRC4 being one of the most efficient and best characterized. RAD51 inactivation by small molecules has been proposed as a strategy to impair BRCA2/RAD51 binding and, ultimately, the HR pathway, with the aim of making cancer cells more sensitive to PARP inhibitors (PARPi). This strategy, which mimics a synthetic lethality (SL) approach, has been successfully performed in vitro by using the myristoylated derivative of BRC4 (myr-BRC4), designed for a more efficient cell entry. The present study applies a method to obtain a proteomic fingerprint after cellular treatment with the myr-BRC4 peptide using a mass spectroscopy (MS) proteomic approach. (Data are available via ProteomeXchange with identifier PXD042696.) We performed a comparative proteomic profiling of the myr-BRC4 treated vs. untreated BxPC-3 pancreatic cancer cells and evaluated the differential expression of proteins. Among the identified proteins, we focused our attention on proteins shared by both the RAD51 and the BRCA2 interactomes, and on those whose reduction showed high statistical significance. Three downregulated proteins were identified (FANCI, FANCD2, and RPA3), and protein downregulation was confirmed through immunoblotting analysis, validating the MS approach. Our results suggest that, being a direct consequence of myr-BRC4 treatment, the detection of FANCD2, FANCI, and RPA3 downregulation could be used as an indicator for monitoring HR impairment. SIGNIFICANCE: RAD51's inhibition has gained increasing attention because of its possible implications in personalized medicine through the SL approach. Chemical disruption of protein-protein interactions (PPIs) between RAD51 and BRCA2, or some of its partner proteins, could potentiate PARPi DNA damage-induced cell death. This could have application for difficult to treat cancers, such as BRCA-competent and olaparib (PARPi) resistant pancreatic adenocarcinoma. Despite RAD51 being a widely studied target, researchers still lack detailed mechanistic information. This has stifled progress in the field with only a few RAD51 inhibitors having been identified, none of which have gained regulatory approval. Nevertheless, the peptide BRC4 is one of the most specific and best characterized RAD51 binder and inhibitor reported to date. Our study is the first to report the proteomic fingerprint consequent to cellular treatment of myr-BRC4, to offer a reference for the discovery of specific protein/pathway alterations within DNA damage repair. Our results suggest that, being a direct consequence of myr-BRC4 treatment, and ultimately ofBRCA2/RAD51 disruption, the detection of FANCD2, FANCI, and RPA3 downregulation could be used as an indicator for monitoring DNA damage repair impairment and therefore be used to potentiate the development of new effective therapeutic strategies.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Rad51 Recombinase/química , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Proteômica , Peptídeos/metabolismo , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA