Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Vet Res ; 9: 166, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23941229

RESUMO

BACKGROUND: In 2006, bluetongue virus serotype 8 (BTV-8) was detected for the first time in central Europe. Measures to control the infection in livestock were implemented in Switzerland but the question was raised whether free-ranging wildlife could be a maintenance host for BTV-8. Furthermore Toggenburg orbivirus (TOV), considered as a potential 25th BTV serotype, was detected in 2007 in domestic goats in Switzerland and wild ruminants were considered a potential source of infection. To assess prevalences of BTV-8 and TOV infections in wildlife, we conducted a serological and virological survey in red deer, roe deer, Alpine chamois and Alpine ibex between 2009 and 2011. Because samples originating from wildlife carcasses are often of poor quality, we also documented the influence of hemolysis on test results, and evaluated the usefulness of confirmatory tests. RESULTS: Ten out of 1,898 animals (0.5%, 95% confidence interval 0.3-1.0%) had detectable antibodies against BTV-8 and BTV-8 RNA was found in two chamois and one roe deer (0.3%, 0.1-0.8%). Seroprevalence was highest among red deer, and the majority of positive wild animals were sampled close to areas where outbreaks had been reported in livestock. Most samples were hemolytic and the range of the optical density percentage values obtained in the screening test increased with increasing hemolysis. Confirmatory tests significantly increased specificity of the testing procedure and proved to be applicable even on poor quality samples. Nearly all samples confirmed as positive had an optical density percentage value greater than 50% in the ELISA screening. CONCLUSIONS: Prevalence of BTV-8 infection was low, and none of the tested animals were positive for TOV. Currently, wild ruminants are apparently not a reservoir for these viruses in Switzerland. However, we report for the first time BTV-8 RNA in Alpine chamois. This animal was found at high altitude and far from a domestic outbreak, which suggests that the virus could spread into/through the Alps. Regarding testing procedures, hemolysis did not significantly affect test results but confirmatory tests proved to be necessary to obtain reliable prevalence estimates. The cut-off value recommended by the manufacturer for the screening test was applicable for wildlife samples.


Assuntos
Animais Selvagens/virologia , Vírus Bluetongue , Bluetongue/epidemiologia , Cervos/virologia , Cabras/virologia , Rupicapra/virologia , Animais , Anticorpos Antivirais/imunologia , Feminino , Masculino , Prevalência , Suíça/epidemiologia
2.
BMC Vet Res ; 8: 204, 2012 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-23107231

RESUMO

BACKGROUND: In the frame of an eradication program for bovine viral diarrhea (BVD) in Swiss livestock, the question was raised whether free-ranging wildlife could threaten the success of this sanitary measure. Therefore, we conducted serological and virological investigations on BVD virus (BVDV) infections in the four indigenous wild ruminant species (roe deer, red deer, Alpine chamois and Alpine ibex) from 2009 to 2011, and gathered information on interactions between wild and domestic ruminants in an alpine environment by questionnaire survey. RESULTS: Thirty-two sera out of 1'877 (1.7%, 95% confidence interval [CI] 1.2-2.4) were seropositive for BVDV, and a BVDV1 sub genotype h virus was found in a seropositive chamois (0.05%, 95% CI 0.001-0.3). The seropositive animals originated from sub-alpine or alpine regions and significantly more seropositive red deer, chamois and ibex than roe deer were found. There were no statistically significant differences between sampling units, age classes, genders, and sampling years. The obtained prevalences were significantly lower than those documented in livestock, and most positive wild ruminants were found in proximity of domestic outbreaks. Additionally, BVDV seroprevalence in ibex was significantly lower than previously reported from Switzerland. The survey on interspecific interactions revealed that interactions expected to allow BVDV transmission, from physical contacts to non-simultaneous use of the same areas, regularly occur on pastures among all investigated ruminant species. Interactions involving cervids were more often observed with cattle than with small ruminants, chamois were observed with all three domestic species, and ibex interacted mostly with small ruminants. Interactions related to the use of anthropogenic food sources were frequently observed, especially between red deer and cattle in wintertime. CONCLUSIONS: To our knowledge, this is the first report of BVDV RNA isolated from an Alpine chamois. Nevertheless, our results suggest that BVDV infections are only sporadic in Swiss wild ruminants, despite regular occurrence of interactions with potentially infected livestock. Overall, serological, virological and ethological data indicate that wildlife is currently an incidental spill-over host and not a reservoir for BVDV in Switzerland.


Assuntos
Animais Selvagens , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Cervos , Vírus da Diarreia Viral Bovina/isolamento & purificação , Cabras , Animais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/epidemiologia , Bovinos , Cervos/sangue , Cabras/sangue , Prevalência , RNA Viral/sangue , Estudos Soroepidemiológicos , Suíça/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA