Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963184

RESUMO

We develop ∂-HylleraasMD (∂-HyMD), a fully end-to-end differentiable molecular dynamics software based on the Hamiltonian hybrid particle-field formalism, and use it to establish a protocol for automated optimization of force field parameters. ∂-HyMD is templated on the recently released HylleraaasMD software, while using the JAX autodiff framework as the main engine for the differentiable dynamics. ∂-HyMD exploits an embarrassingly parallel optimization algorithm by spawning independent simulations, whose trajectories are simultaneously processed by reverse mode automatic differentiation to calculate the gradient of the loss function, which is in turn used for iterative optimization of the force-field parameters. We show that parallel organization facilitates the convergence of the minimization procedure, avoiding the known memory and numerical stability issues of differentiable molecular dynamics approaches. We showcase the effectiveness of our implementation by producing a library of force field parameters for standard phospholipids, with either zwitterionic or anionic heads and with saturated or unsaturated tails. Compared to the all-atom reference, the force field obtained by ∂-HyMD yields better density profiles than the parameters derived from previously utilized gradient-free optimization procedures. Moreover, ∂-HyMD models can predict with good accuracy properties not included in the learning objective, such as lateral pressure profiles, and are transferable to other systems, including triglycerides.

2.
Biochemistry ; 62(3): 782-796, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36705397

RESUMO

Unlike typical chorismate mutases, the enzyme from Mycobacterium tuberculosis (MtCM) has only low activity on its own. Remarkably, its catalytic efficiency kcat/Km can be boosted more than 100-fold by complex formation with a partner enzyme. Recently, an autonomously fully active MtCM variant was generated using directed evolution, and its structure was solved by X-ray crystallography. However, key residues were involved in crystal contacts, challenging the functional interpretation of the structural changes. Here, we address these challenges by microsecond molecular dynamics simulations, followed up by additional kinetic and structural analyses of selected sets of specifically engineered enzyme variants. A comparison of wild-type MtCM with naturally and artificially activated MtCMs revealed the overall dynamic profiles of these enzymes as well as key interactions between the C-terminus and the active site loop. In the artificially evolved variant of this model enzyme, this loop is preorganized and stabilized by Pro52 and Asp55, two highly conserved residues in typical, highly active chorismate mutases. Asp55 stretches across the active site and helps to appropriately position active site residues Arg18 and Arg46 for catalysis. The role of Asp55 can be taken over by another acidic residue, if introduced at position 88 close to the C-terminus of MtCM, as suggested by molecular dynamics simulations and confirmed by kinetic investigations of engineered variants.


Assuntos
Corismato Mutase , Mycobacterium tuberculosis , Corismato Mutase/química , Simulação de Dinâmica Molecular , Projetos de Pesquisa , Cristalografia por Raios X
3.
J Am Chem Soc ; 145(30): 16305-16309, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37471267

RESUMO

Ab initio molecular dynamics simulations are used to explore tetrahydrofuran (THF) solutions containing pure LiCl and LiCl with CH3MgCl, as model constituents of the turbo Grignard reagent. LiCl aggregates as Li4Cl4, which preferentially assumes compact cubane-like conformations. In particular, an open-edge pseudotetrahedral frame is promoted by solvent-assisted Li-Cl bond cleavage. Among the Grignard species involved in the Schlenk equilibrium, LiCl prefers to coordinate MgCl2 through µ2-Cl bridges. Using a 1:1 Li:Mg ratio, the plastic tetranuclear LiCl cluster decomposes to a highly solvated mixed LiCl·MgCl2 aggregate with prevalent Li-(µ2-Cl)2-Mg rings and linear LiCl entities. The MgCl2-assisted disaggregation of Li4Cl4 occurs through transient structures analogous to those detected for pure LiCl in THF, also corresponding to moieties observed in the solid state. This study identifies a synergistic role of LiCl for the determination of the compounds present in turbo Grignard solutions. LiCl shifts the Schlenk equilibrium promoting a higher concentration of dialkylmagnesium, while decomposing into smaller, more soluble, mixed Li:Mg:Cl clusters.

4.
J Synchrotron Radiat ; 30(Pt 5): 885-894, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37526994

RESUMO

In X-ray macromolecular crystallography (MX), single-wavelength anomalous dispersion (SAD) and multi-wavelength anomalous dispersion (MAD) techniques are commonly used for obtaining experimental phases. For an MX synchrotron beamline to support SAD and MAD techniques it is a prerequisite to have a reliable, fast and well automated energy scan routine. This work reports on a continuous energy scan procedure newly implemented at the BioMAX MX beamline at MAX IV Laboratory. The continuous energy scan is fully automated, capable of measuring accurate fluorescence counts over the absorption edge of interest while minimizing the sample exposure to X-rays, and is about a factor of five faster compared with a conventional step scan previously operational at BioMAX. The implementation of the continuous energy scan facilitates the prompt access to the anomalous scattering data, required for the SAD and MAD experiments.

5.
Inorg Chem ; 62(12): 4835-4846, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36920236

RESUMO

The halogen bond (XB) is a highly directional class of noncovalent interactions widely explored by experimental and computational studies. However, the NMR signature of the XB has attracted limited attention. The prediction and analysis of the solid-state NMR (SSNMR) chemical shift tensor provide useful strategies to better understand XB interactions. In this work, we employ a computational protocol for modeling and analyzing the 19F SSNMR chemical shifts previously measured in a family of square-planar trans NiII-L2-iodoaryl-fluoride (L = PEt3) complexes capable of forming self-complementary networks held by a NiF···I(C) halogen bond [Thangavadivale, V.; Chem. Sci. 2018, 9, 3767-3781]. To understand how the 19F NMR resonances of the nickel-bonded fluoride are affected by the XB, we investigate the origin of the shielding in trans-[NiF(2,3,5,6-C6F4I)(PEt3)2], trans-[NiF(2,3,4,5-C6F4I)(PEt3)2], and trans-[NiF(C6F5)(PEt3)2] in the solid state, where a XB is present in the two former systems but not in the last. We perform the 19F NMR chemical shift calculations both in periodic and molecular models. The results show that the crystal packing has little influence on the NMR signatures of the XB, and the NMR can be modeled successfully with a pair of molecules interacting via the XB. Thus, the observed difference in chemical shift between solid-state and solution NMR can be essentially attributed to the XB interaction. The very high shielding of the fluoride and its driving contributor, the most shielded component of the chemical shift tensor, are well reproduced at the 2c-ZORA level. Analysis of the factors controlling the shielding shows how the highest occupied Ni/F orbitals shield the fluoride in the directions perpendicular to the Ni-F bond and specifically perpendicular to the coordination plane. This shielding arises from the magnetic coupling of the Ni(3d)/F(2p lone pair) orbitals with the vacant σNi-F* orbital, thereby rationalizing the very highly upfield (shielded) resonance of the component (δ33) along this direction. We show that these features are characteristic of square-planar nickel-fluoride complexes. The deshielding of the fluoride in the halogen-bonded systems is attributed to an increase in the energy gap between the occupied and vacant orbitals that are mostly responsible for the paramagnetic terms, notably along the most shielded direction.

6.
J Chem Inf Model ; 63(16): 4979-4985, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37552250

RESUMO

Using small-angle scattering with either X-ray or neutron sources has become common in the investigation of soft-matter systems. These experiments provide information about the coarse shape of the scattered objects, but obtaining more-detailed information can usually only be achieved with the aid of molecular simulations. In this Application Note, we report the implementation of an extension in PLUMED to compute the small-angle neutron scattering (SANS), which can be used for data processing as well for enhanced sampling, in particular with the metainference method to bias simulations and sample structures with a resulting spectrum in agreement with an experimental reference. Our implementation includes a resolution function that can be used to smear the SANS intensities according to beamline error sources and is compatible with both all-atom and coarse-grained simulations. Scripts to aid in the calculation of the scattering lengths when the system is coarse-grained and to aid in preparing the inputs are provided. We illustrate the use of the implementation with metainference by performing coarse-grained simulations of beta-octylglucoside and dodecylphosphocholine micelles in water. With different software and different Hamiltonians, we show that the metainference SANS bias can drive micelles to be split and to change shapes to achieve a better agreement with the experimental reference.


Assuntos
Micelas , Software , Espalhamento a Baixo Ângulo , Água
7.
J Chem Inf Model ; 63(7): 2207-2217, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36976890

RESUMO

Hamiltonian hybrid particle-field molecular dynamics is a computationally efficient method to study large soft matter systems. In this work, we extend this approach to constant-pressure (NPT) simulations. We reformulate the calculation of internal pressure from the density field by taking into account the intrinsic spread of the particles in space, which naturally leads to a direct anisotropy in the pressure tensor. The anisotropic contribution is crucial for reliably describing the physics of systems under pressure, as demonstrated by a series of tests on analytical and monatomic model systems as well as realistic water/lipid biphasic systems. Using Bayesian optimization, we parametrize the field interactions of phospholipids to reproduce the structural properties of their lamellar phases, including area per lipid, and local density profiles. The resulting model excels in providing pressure profiles in qualitative agreement with all-atom modeling, and surface tension and area compressibility in quantitative agreement with experimental values, indicating the correct description of long-wavelength undulations in large membranes. Finally, we demonstrate that the model is capable of reproducing the formation of lipid droplets inside a lipid bilayer.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Teorema de Bayes , Bicamadas Lipídicas/química , Fosfolipídeos , Tensão Superficial
8.
J Chem Phys ; 158(19)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37184022

RESUMO

Hybrid particle-field molecular dynamics is a molecular simulation strategy, wherein particles couple to a density field instead of through ordinary pair potentials. Traditionally considered a mean-field theory, a momentum and energy-conserving hybrid particle-field formalism has recently been introduced, which was demonstrated to approach the Gaussian Core model potential in the grid-converged limit. Here, we expand on and generalize the correspondence between the Hamiltonian hybrid particle-field method and particle-particle pair potentials. Using the spectral procedure suggested by Bore and Cascella, we establish compatibility to any local soft pair potential in the limit of infinitesimal grid spacing. Furthermore, we document how the mean-field regime often observed in hybrid particle-field simulations is due to the systems under consideration, and not an inherent property of the model. Considering the Gaussian filter form, in particular, we demonstrate the ability of the Hamiltonian hybrid particle-field model to recover all structural and dynamical properties of the Gaussian Core model, including solid phases, a first-order phase transition, and anomalous transport properties. We quantify the impact of the grid spacing on the correspondence, as well as the effect of the particle-field filtering length scale on the emergent particle-particle correlations.

9.
Opt Express ; 30(12): 20980-20998, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224830

RESUMO

A real-time and accurate characterization of the X-ray beam size is essential to enable a large variety of different experiments at free-electron laser facilities. Typically, ablative imprints are employed to determine shape and size of µm-focused X-ray beams. The high accuracy of this state-of-the-art method comes at the expense of the time required to perform an ex-situ image analysis. In contrast, diffraction at a curved grating with suitably varying period and orientation forms a magnified image of the X-ray beam, which can be recorded by a 2D pixelated detector providing beam size and pointing jitter in real time. In this manuscript, we compare results obtained with both techniques, address their advantages and limitations, and demonstrate their excellent agreement. We present an extensive characterization of the FEL beam focused to ≈1 µm by two Kirkpatrick-Baez (KB) mirrors, along with optical metrology slope profiles demonstrating their exceptionally high quality. This work provides a systematic and comprehensive study of the accuracy provided by curved gratings in real-time imaging of X-ray beams at a free-electron laser facility. It is applied here to soft X-rays and can be extended to the hard X-ray range. Furthermore, curved gratings, in combination with a suitable detector, can provide spatial properties of µm-focused X-ray beams at MHz repetition rate.

10.
J Chem Inf Model ; 62(24): 6297-6301, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-35587272

RESUMO

In the quest for greater equity in science, individual attitudes and institutional policies should also embrace greater diversity and inclusion of minority groups. This viewpoint calls for a broader definition of gender bias in STEM to include gender identity and for increased attention to the issue of bias amplification due to geographic affiliation in the field of computational chemistry and chemoinformatics. It briefly discusses some active interventions to tackle bias on gender, gender identity, and geographic affiliation in STEM.


Assuntos
Identidade de Gênero , Sexismo , Humanos , Masculino , Feminino , Viés
11.
J Am Chem Soc ; 142(6): 2984-2994, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31951398

RESUMO

More than 100 years since its discovery, the mechanism of the Grignard reaction remains unresolved. Ambiguities arise from the concomitant presence of multiple organomagnesium species and the competing mechanisms involving either nucleophilic addition or the formation of radical intermediates. To shed light on this topic, quantum-chemical calculations and ab initio molecular dynamics simulations are used to study the reaction of CH3MgCl in tetrahydrofuran with acetaldehyde and fluorenone as prototypical reagents. All organomagnesium species coexisting in solution due to the Schlenk equilibrium are found to be competent reagents for the nucleophilic pathway. The range of activation energies displayed by all of these compounds is relatively small. The most reactive species are a dinuclear Mg complex in which the substrate and the nucleophile initially bind to different Mg centers and the mononuclear dimethyl magnesium. The radical reaction, which requires the homolytic cleavage of the Mg-CH3 bond, cannot occur unless a substrate with a low-lying π*(CO) orbital coordinates the Mg center. This rationalizes why a radical mechanism is detected only in the presence of substrates with a low reduction potential. This feature, in turn, does not necessarily favor the nucleophilic addition, as shown for the reaction with fluorenone. The solvent needs to be considered as a reactant for both the nucleophilic and the radical reactions, and its dynamics is essential for representing the energy profile. The similar reactivity of several species in fast equilibrium implies that the reaction does not occur via a single process but by an ensemble of parallel reactions.

12.
Inorg Chem ; 59(23): 17509-17518, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33226791

RESUMO

1H NMR spectroscopy has become an important technique for the characterization of transition-metal hydride complexes, whose metal-bound hydrides are often difficult to locate by X-ray diffraction. In this regard, the accurate prediction of 1H NMR chemical shifts provides a useful, but challenging, strategy to help in the interpretation of the experimental spectra. In this work, we establish a density-functional-theory protocol that includes relativistic, solvent, and dynamic effects at a high level of theory, allowing us to report an accurate and reliable interpretation of 1H NMR hydride chemical shifts of iridium polyhydride complexes. In particular, we have studied in detail the hydride chemical shifts of the [Ir6(IMe)8(CO)2H14]2+ complex in order to validate previous assignments. The computed 1H NMR chemical shifts are strongly dependent on the relativistic treatment, the choice of the DFT exchange-correlation functional, and the conformational dynamics. By combining a fully relativistic four-component electronic-structure treatment with ab initio molecular dynamics, we were able to reliably model both the terminal and bridging hydride chemical shifts and to show that two NMR hydride signals were inversely assigned in the experiment.

13.
J Chem Phys ; 153(9): 094106, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32891104

RESUMO

Hybrid particle-field molecular dynamics combines standard molecular potentials with density-field models into a computationally efficient methodology that is well-adapted for the study of mesoscale soft matter systems. Here, we introduce a new formulation based on filtered densities and a particle-mesh formalism that allows for Hamiltonian dynamics and alias-free force computation. This is achieved by introducing a length scale for the particle-field interactions independent of the numerical grid used to represent the density fields, enabling systematic convergence of the forces upon grid refinement. Our scheme generalizes the original particle-field molecular dynamics implementations presented in the literature, finding them as limit conditions. The accuracy of this new formulation is benchmarked by considering simple monoatomic systems described by the standard hybrid particle-field potentials. We find that by controlling the time step and grid size, conservation of energy and momenta, as well as disappearance of alias, is obtained. Increasing the particle-field interaction length scale permits the use of larger time steps and coarser grids. This promotes the use of multiple time step strategies over the quasi-instantaneous approximation, which is found to not conserve energy and momenta equally well. Finally, our investigations of the structural and dynamic properties of simple monoatomic systems show a consistent behavior between the present formulation and Gaussian core models.

14.
J Chem Phys ; 152(18): 184908, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32414244

RESUMO

Hybrid particle-field methods are computationally efficient approaches for modeling soft matter systems. So far, applications of these methodologies have been limited to constant volume conditions. Here, we reformulate particle-field interactions to represent systems coupled to constant external pressure. First, we show that the commonly used particle-field energy functional can be modified to model and parameterize the isotropic contributions to the pressure tensor without interfering with the microscopic forces on the particles. Second, we employ a square gradient particle-field interaction term to model non-isotropic contributions to the pressure tensor, such as in surface tension phenomena. This formulation is implemented within the hybrid particle-field molecular dynamics approach and is tested on a series of model systems. Simulations of a homogeneous water box demonstrate that it is possible to parameterize the equation of state to reproduce any target density for a given external pressure. Moreover, the same parameterization is transferable to systems of similar coarse-grained mapping resolution. Finally, we evaluate the feasibility of the proposed approach on coarse-grained models of phospholipids, finding that the term between water and the lipid hydrocarbon tails is alone sufficient to reproduce the experimental area per lipid in constant-pressure simulations and to produce a qualitatively correct lateral pressure profile.

15.
Angew Chem Int Ed Engl ; 59(42): 18591-18598, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-32543728

RESUMO

The shape and size of self-assembled structures upon local organization of their molecular building blocks are hard to predict in the presence of long-range interactions. Combining small-angle X-ray/neutron scattering data, theoretical modelling, and computer simulations, sodium dodecyl sulfate (SDS), over a broad range of concentrations and ionic strengths, was investigated. Computer simulations indicate that micellar shape changes are associated with different binding of the counterions. By employing a toy model based on point charges on a surface, and comparing it to experiments and simulations, it is demonstrated that the observed morphological changes are caused by symmetry breaking of the irreducible building blocks, with the formation of transient surfactant dimers mediated by the counterions that promote the stabilization of cylindrical instead of spherical micelles. The present model is of general applicability and can be extended to all systems controlled by the presence of mobile charges.

16.
Biochem Biophys Res Commun ; 498(2): 327-333, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29101041

RESUMO

The capability of coarse-grained models based on the MARTINI mapping to reproduce the gel-liquid phase transition in saturated and unsaturated model lipids was investigated. We found that the model is able to reproduce a lower critical temperature for 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) with respect to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Nonetheless, the appearance of a gel phase for DOPC is strictly dependent on the intramolecular parameters chosen to model its molecular structure. In particular, we show that the bending angle at the coarse-grained bead corresponding to the unsaturated carbon-carbon bond acts as an order parameter determining the temperature of the phase transition. Structural analysis of the molecular dynamics simulations runs evidences that in the gel phase, the packing of the lipophilic tails of DOPC assume a different conformation than in the liquid phase. In the latter phase, the DOPC geometry resembles that of the relaxed free molecule. DPPC:DOPC mixtures show a single phase transition temperature, indicating that the observation of a phase separation between the two lipids requires the simulation of systems with sizes much larger than the ones used here.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Bicamadas Lipídicas/metabolismo , Conformação Molecular , Fosfatidilcolinas/metabolismo , Temperatura
17.
Chemistry ; 24(20): 5074-5077, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29243856

RESUMO

We performed quantum-chemical calculations, ab initio molecular dynamics, hybrid quantum mechanics/molecular mechanics (QM/MM) and enhanced sampling metadynamics simulations to investigate the origin of metal specificity in isatin hydrolase from Labrenzia aggregata. The peculiar octahedral binding geometry of the Mn2+ ion in the Michaelis complex includes both the isatin substrate and the catalytic water within the first coordination shell of the cation. Our calculations show that the same arrangement of the ligands cannot be efficiently achieved in the presence of other small divalent metal cations such as Zn2+ or Cu2+ . On the contrary, bulkier alkaline-earth cations such as Mg2+ , which allow octahedral coordination, are not able to activate the catalytic water into the stronger OH- nucleophile required to attack the stable N-aryl-amide moiety of isatin.


Assuntos
Proteínas de Bactérias/química , Hidrolases/química , Isatina/química , Metais/química , Simulação de Dinâmica Molecular , Rhodobacteraceae/enzimologia , Cátions Bivalentes/química , Simulação por Computador , Ligantes , Ligação Proteica , Teoria Quântica , Termodinâmica , Água/química
18.
Phys Chem Chem Phys ; 19(44): 29780-29794, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28956043

RESUMO

The solubilization mechanism of lipid membranes in the presence of Triton X-100 (TX-100) is investigated at molecular resolution using molecular dynamics (MD) simulations. Thanks to the large time and length scales accessible by the hybrid particle-field formulation of the models employed here, the complex process of membrane solubilization has been studied, with the goal of verifying the three stage model reported in the literature. DPPC lipid bilayers and vesicles have been studied at different concentrations of the TX-100 detergent employing coarse grained (CG) models. Systems up to ∼600.000 beads, corresponding to more than 2 millions heavy atoms, have been simulated. Moreover, in order to clarify several experimental pieces of evidence, both slow and fast detergent partition scenarios have been investigated. Flat and curved (vesicles) lipid bilayer surfaces, interacting with TX-100, have been considered to study the curvature effects on the detergent partition rate in the membrane. Shape and conformational changes of mixed DPPC/TX-100 vesicles, as a function of TX-100 content, have also been studied. In particular, high curvature surfaces, corresponding to a higher local TX-100 content, promote a membrane rupture. In flat lipid surfaces, on the time scale simulated the detergent partition is almost absent, following a different pathway of the solubilization membrane mechanism.

19.
Proc Natl Acad Sci U S A ; 111(50): E5445-54, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25453064

RESUMO

Vision relies on photoactivation of visual pigments in rod and cone photoreceptor cells of the retina. The human eye structure and the absorption spectra of pigments limit our visual perception of light. Our visual perception is most responsive to stimulating light in the 400- to 720-nm (visible) range. First, we demonstrate by psychophysical experiments that humans can perceive infrared laser emission as visible light. Moreover, we show that mammalian photoreceptors can be directly activated by near infrared light with a sensitivity that paradoxically increases at wavelengths above 900 nm, and display quadratic dependence on laser power, indicating a nonlinear optical process. Biochemical experiments with rhodopsin, cone visual pigments, and a chromophore model compound 11-cis-retinyl-propylamine Schiff base demonstrate the direct isomerization of visual chromophore by a two-photon chromophore isomerization. Indeed, quantum mechanics modeling indicates the feasibility of this mechanism. Together, these findings clearly show that human visual perception of near infrared light occurs by two-photon isomerization of visual pigments.


Assuntos
Raios Infravermelhos , Fótons , Células Fotorreceptoras de Vertebrados/fisiologia , Rodopsina/química , Visão Ocular/fisiologia , Absorção de Radiação , Adulto , Animais , Bovinos , Simulação por Computador , Eletrorretinografia , Feminino , Humanos , Isomerismo , Lasers , Masculino , Camundongos , Psicofísica
20.
J Struct Biol ; 190(3): 261-70, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25987292

RESUMO

We present the crystal structures of the SEC14-like domain of supernatant protein factor (SPF) in complex with squalene and 2,3-oxidosqualene. The structures were resolved at 1.75Å (complex with squalene) and 1.6Å resolution (complex with 2,3-oxidosqualene), leading in both cases to clear images of the protein/substrate interactions. Ligand binding is facilitated by removal of the Golgi-dynamics (GOLD) C-terminal domain of SPF, which, as shown in previous structures of the apo-protein, blocked the opening of the binding pocket to the exterior. Both substrates bind into a large hydrophobic cavity, typical of such lipid-transporter family. Our structures report no specific recognition mode for the epoxide group. In fact, for both molecules, ligand affinity is dominated by hydrophobic interactions, and independent investigations by computational models or differential scanning micro-calorimetry reveal similar binding affinities for both ligands. Our findings elucidate the molecular bases of the role of SPF in sterol endo-synthesis, supporting the original hypothesis that SPF is a facilitator of substrate flow within the sterol synthetic pathway. Moreover, our results suggest that the GOLD domain acts as a regulator, as its conformational displacement must occur to favor ligand binding and release during the different synthetic steps.


Assuntos
Proteínas de Transporte/química , Colesterol/química , Esqualeno/análogos & derivados , Esqualeno/química , Transporte Biológico/fisiologia , Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Cristalografia por Raios X/métodos , Escherichia coli/metabolismo , Complexo de Golgi/metabolismo , Ligantes , Ligação Proteica , Esqualeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA