Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Circ Res ; 123(1): 57-72, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29636378

RESUMO

RATIONALE: Biological significance of c-Kit as a cardiac stem cell marker and role(s) of c-Kit+ cells in myocardial development or response to pathological injury remain unresolved because of varied and discrepant findings. Alternative experimental models are required to contextualize and reconcile discordant published observations of cardiac c-Kit myocardial biology and provide meaningful insights regarding clinical relevance of c-Kit signaling for translational cell therapy. OBJECTIVE: The main objectives of this study are as follows: demonstrating c-Kit myocardial biology through combined studies of both human and murine cardiac cells; advancing understanding of c-Kit myocardial biology through creation and characterization of a novel, inducible transgenic c-Kit reporter mouse model that overcomes limitations inherent to knock-in reporter models; and providing perspective to reconcile disparate viewpoints on c-Kit biology in the myocardium. METHODS AND RESULTS: In vitro studies confirm a critical role for c-Kit signaling in both cardiomyocytes and cardiac stem cells. Activation of c-Kit receptor promotes cell survival and proliferation in stem cells and cardiomyocytes of either human or murine origin. For creation of the mouse model, the cloned mouse c-Kit promoter drives Histone2B-EGFP (enhanced green fluorescent protein; H2BEGFP) expression in a doxycycline-inducible transgenic reporter line. The combination of c-Kit transgenesis coupled to H2BEGFP readout provides sensitive, specific, inducible, and persistent tracking of c-Kit promoter activation. Tagging efficiency for EGFP+/c-Kit+ cells is similar between our transgenic versus a c-Kit knock-in mouse line, but frequency of c-Kit+ cells in cardiac tissue from the knock-in model is 55% lower than that from our transgenic line. The c-Kit transgenic reporter model reveals intimate association of c-Kit expression with adult myocardial biology. Both cardiac stem cells and a subpopulation of cardiomyocytes express c-Kit in uninjured adult heart, upregulating c-Kit expression in response to pathological stress. CONCLUSIONS: c-Kit myocardial biology is more complex and varied than previously appreciated or documented, demonstrating validity in multiple points of coexisting yet heretofore seemingly irreconcilable published findings.


Assuntos
Miocárdio/metabolismo , Miócitos Cardíacos/fisiologia , Proteínas Proto-Oncogênicas c-kit/fisiologia , Células-Tronco/fisiologia , Animais , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Receptores ErbB/metabolismo , Técnicas de Transferência de Genes , Humanos , Camundongos , Camundongos Transgênicos , Modelos Animais , Miocárdio/citologia , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Estresse Fisiológico
2.
Circ Res ; 121(2): 113-124, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28446444

RESUMO

RATIONALE: The relative actions and synergism between distinct myocardial-derived stem cell populations remain obscure. Ongoing debates on optimal cell population(s) for treatment of heart failure prompted implementation of a protocol for isolation of multiple stem cell populations from a single myocardial tissue sample to develop new insights for achieving myocardial regeneration. OBJECTIVE: Establish a robust cardiac stem cell isolation and culture protocol to consistently generate 3 distinct stem cell populations from a single human heart biopsy. METHODS AND RESULTS: Isolation of 3 endogenous cardiac stem cell populations was performed from human heart samples routinely discarded during implantation of a left ventricular assist device. Tissue explants were mechanically minced into 1 mm3 pieces to minimize time exposure to collagenase digestion and preserve cell viability. Centrifugation removes large cardiomyocytes and tissue debris producing a single cell suspension that is sorted using magnetic-activated cell sorting technology. Initial sorting is based on tyrosine-protein kinase Kit (c-Kit) expression that enriches for 2 c-Kit+ cell populations yielding a mixture of cardiac progenitor cells and endothelial progenitor cells. Flowthrough c-Kit- mesenchymal stem cells are positively selected by surface expression of markers CD90 and CD105. After 1 week of culture, the c-Kit+ population is further enriched by selection for a CD133+ endothelial progenitor cell population. Persistence of respective cell surface markers in vitro is confirmed both by flow cytometry and immunocytochemistry. CONCLUSIONS: Three distinct cardiac cell populations with individualized phenotypic properties consistent with cardiac progenitor cells, endothelial progenitor cells, and mesenchymal stem cells can be successfully concurrently isolated and expanded from a single tissue sample derived from human heart failure patients.


Assuntos
Células Endoteliais , Citometria de Fluxo/métodos , Células-Tronco Mesenquimais , Miocárdio/citologia , Miócitos Cardíacos , Biópsia , Separação Celular/métodos , Células Cultivadas , Células Endoteliais/fisiologia , Coração/fisiologia , Humanos , Células-Tronco Mesenquimais/fisiologia , Miócitos Cardíacos/fisiologia , Células-Tronco/fisiologia
3.
J Mol Cell Cardiol ; 100: 54-63, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27721024

RESUMO

BACKGROUND: Myocardial infarction is followed by cardiac dysfunction, cellular death, and ventricular remodeling, including tissue fibrosis. S100A4 protein plays multiple roles in cellular survival, and tissue fibrosis, but the relative role of the S100A4 in the myocardium after myocardial infarction is unknown. This study aims to investigate the role of S100A4 in myocardial remodeling and cardiac function following infarct damage. METHODS AND RESULTS: S100A4 expression is low in the adult myocardium, but significantly increased following myocardial infarction. Deletion of S100A4 increased cardiac damage after myocardial infarction, whereas cardiac myocyte-specific overexpression of S100A4 protected the infarcted myocardium. Decreased cardiac function in S100A4 Knockout mice was accompanied with increased cardiac remodeling, fibrosis, and diminished capillary density in the remote myocardium. Loss of S100A4 caused increased apoptotic cell death both in vitro and in vivo in part mediated by decreased VEGF expression. Conversely, S100A4 overexpression protected cells against apoptosis in vitro and in vivo. Increased pro-survival AKT-signaling explained reduced apoptosis in S100A4 overexpressing cells. CONCLUSION: S100A4 expression protects cardiac myocytes against myocardial ischemia and is required for stabilization of cardiac function after MI.


Assuntos
Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100/genética , Estresse Fisiológico/genética , Animais , Morte Celular/genética , Modelos Animais de Doenças , Ecocardiografia , Expressão Gênica , Hemodinâmica , Camundongos , Camundongos Knockout , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Isquemia Miocárdica/diagnóstico , Isquemia Miocárdica/fisiopatologia , Miocárdio/patologia , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Remodelação Ventricular
4.
Sci Rep ; 8(1): 12060, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104715

RESUMO

Regenerative therapeutic approaches for myocardial diseases often involve delivery of stem cells expanded ex vivo. Prior studies indicate that cell culture conditions affect functional and phenotypic characteristics, but relationship(s) of cultured cells derived from freshly isolated populations and the heterogeneity of the cultured population remain poorly defined. Functional and phenotypic characteristics of ex vivo expanded cells will determine outcomes of interventional treatment for disease, necessitating characterization of the impact that ex vivo expansion has upon isolated stem cell populations. Single-cell RNA-Seq profiling (scRNA-Seq) was performed to determine consequences of culture expansion upon adult cardiac progenitor cells (CPCs) as well as relationships with other cell populations. Bioinformatic analyses demonstrate that identity marker genes expressed in freshly isolated cells become undetectable in cultured CPCs while low level expression emerges for thousands of other genes. Transcriptional profile of CPCs exhibited greater degree of similarity throughout the cultured population relative to freshly isolated cells. Findings were validated by comparative analyses using scRNA-Seq datasets of various cell types generated by multiple scRNA-Seq technology. Increased transcriptome diversity and decreased population heterogeneity in the cultured cell population may help account for reported outcomes associated with experimental and clinical use of CPCs for treatment of myocardial injury.


Assuntos
Células-Tronco Adultas/fisiologia , Células Cultivadas/fisiologia , Miócitos Cardíacos/fisiologia , Transplante de Células-Tronco/métodos , Adulto , Células-Tronco Adultas/transplante , Animais , Diferenciação Celular/genética , Células Cultivadas/transplante , Biologia Computacional , Conjuntos de Dados como Assunto , Feminino , Perfilação da Expressão Gênica/métodos , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/terapia , Humanos , Camundongos , Miocárdio/citologia , Miocárdio/patologia , Miócitos Cardíacos/transplante , Cultura Primária de Células/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma/genética , Resultado do Tratamento
5.
J Skin Cancer ; 2012: 571087, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23316368

RESUMO

What is the cellular origin of melanoma? What role do melanocyte stem cells (MSC) and other melanocyte precursors play in the development of melanoma? Are MSCs and other latent melanocyte precursors more susceptible to solar radiation? These and many other questions can be very effectively addressed using the zebrafish model. Zebrafish have a robust regenerative capability, permitting the study of how MSCs are regulated and recruited at specific times and places to generate the pigment pattern following fin amputation or melanocyte ablation. They can be used to determine the effects of environmental radiation on the proliferation, survival, repair, and differentiation of MSCs. Our lab is using zebrafish to investigate how UVA- (320-400 nm) and UVB- (290-320 nm) induced damage to MSCs may contribute to the development of melanoma. A review is given of MSCs in zebrafish as well as experimental techniques and drugs for manipulating MSC populations. These techniques can be used to design experiments to help answer many questions regarding the role of MSCs or melanocyte precursors in the formation of melanoma stem cells and tumors following exposure to UVA/UVB radiation.

6.
Stem Cells Int ; 2012: 407079, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22666269

RESUMO

Recent studies suggest that extrafollicular dermal melanocyte stem cells (MSCs) persist after birth in the superficial nerve sheath of peripheral nerves and give rise to migratory melanocyte precursors when replacements for epidermal melanocytes are needed on the basal epidermal layer of the skin. If a damaged MSC or melanocyte precursor can be shown to be the primary origin of melanoma, targeted identification and eradication of it by antibody-based therapies will be the best method to treat melanoma and a very effective way to prevent its recurrence. Transcription factors and signaling pathways involved in MSC self-renewal, expansion and differentiation are reviewed. A model is presented to show how the detrimental effects of long-term UVA/UVB radiation on DNA and repair mechanisms in MSCs convert them to melanoma stem cells. Zebrafish have many advantages for investigating the role of MSCs in the development of melanoma. The signaling pathways regulating the development of MSCs in zebrafish are very similar to those found in humans and mice. The ability to easily manipulate the MSC population makes zebrafish an excellent model for studying how damage to MSCs may lead to melanoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA